Spaces:
Paused
Paused
# Copyright 2022 Google LLC | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# https://www.apache.org/licenses/LICENSE-2.0 | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
r"""Beam pipeline that generates Middlebury `Other Datasets` triplet TFRecords. | |
Middlebury interpolation evaluation dataset consists of two subsets. | |
(1) Two frames only, without the intermediate golden frame. A total of 12 such | |
pairs, with folder names (Army, Backyard, Basketball, Dumptruck, | |
Evergreen, Grove, Mequon, Schefflera, Teddy, Urban, Wooden, Yosemite) | |
(2) Two frames together with the intermediate golden frame. A total of 12 such | |
triplets, with folder names (Beanbags, Dimetrodon, DogDance, Grove2, | |
Grove3, Hydrangea, MiniCooper, RubberWhale, Urban2, Urban3, Venus, Walking) | |
This script runs on (2), i.e. the dataset with the golden frames. For more | |
information, visit https://vision.middlebury.edu/flow/data. | |
Input to the script is the root-folder that contains the unzipped folders | |
of input pairs (other-data) and golen frames (other-gt-interp). | |
Output TFRecord is a tf.train.Example proto of each image triplet. | |
The feature_map takes the form: | |
feature_map { | |
'frame_0/encoded': | |
tf.io.FixedLenFeature((), tf.string, default_value=''), | |
'frame_0/format': | |
tf.io.FixedLenFeature((), tf.string, default_value='jpg'), | |
'frame_0/height': | |
tf.io.FixedLenFeature((), tf.int64, default_value=0), | |
'frame_0/width': | |
tf.io.FixedLenFeature((), tf.int64, default_value=0), | |
'frame_1/encoded': | |
tf.io.FixedLenFeature((), tf.string, default_value=''), | |
'frame_1/format': | |
tf.io.FixedLenFeature((), tf.string, default_value='jpg'), | |
'frame_1/height': | |
tf.io.FixedLenFeature((), tf.int64, default_value=0), | |
'frame_1/width': | |
tf.io.FixedLenFeature((), tf.int64, default_value=0), | |
'frame_2/encoded': | |
tf.io.FixedLenFeature((), tf.string, default_value=''), | |
'frame_2/format': | |
tf.io.FixedLenFeature((), tf.string, default_value='jpg'), | |
'frame_2/height': | |
tf.io.FixedLenFeature((), tf.int64, default_value=0), | |
'frame_2/width': | |
tf.io.FixedLenFeature((), tf.int64, default_value=0), | |
'path': | |
tf.io.FixedLenFeature((), tf.string, default_value=''), | |
} | |
Usage example: | |
python3 -m frame_interpolation.datasets.create_middlebury_tfrecord \ | |
--input_dir=<root folder of middlebury-other> \ | |
--output_tfrecord_filepath=<output tfrecord filepath> | |
""" | |
import os | |
from . import util | |
from absl import app | |
from absl import flags | |
from absl import logging | |
import apache_beam as beam | |
import tensorflow as tf | |
_INPUT_DIR = flags.DEFINE_string( | |
'input_dir', | |
default='/root/path/to/middlebury-other', | |
help='Path to the root directory of the `Other Datasets` of the Middlebury ' | |
'interpolation evaluation data. ' | |
'We expect the data to have been downloaded and unzipped. \n' | |
'Folder structures:\n' | |
'| raw_middlebury_other_dataset/\n' | |
'| other-data/\n' | |
'| | Beanbags\n' | |
'| | | frame10.png\n' | |
'| | | frame11.png\n' | |
'| | Dimetrodon\n' | |
'| | | frame10.png\n' | |
'| | | frame11.png\n' | |
'| | ...\n' | |
'| other-gt-interp/\n' | |
'| | Beanbags\n' | |
'| | | frame10i11.png\n' | |
'| | Dimetrodon\n' | |
'| | | frame10i11.png\n' | |
'| | ...\n') | |
_INPUT_PAIRS_FOLDERNAME = flags.DEFINE_string( | |
'input_pairs_foldername', | |
default='other-data', | |
help='Foldername containing the folders of the input frame pairs.') | |
_GOLDEN_FOLDERNAME = flags.DEFINE_string( | |
'golden_foldername', | |
default='other-gt-interp', | |
help='Foldername containing the folders of the golden frame.') | |
_OUTPUT_TFRECORD_FILEPATH = flags.DEFINE_string( | |
'output_tfrecord_filepath', | |
default=None, | |
required=True, | |
help='Filepath to the output TFRecord file.') | |
_NUM_SHARDS = flags.DEFINE_integer('num_shards', | |
default=3, | |
help='Number of shards used for the output.') | |
# Image key -> basename for frame interpolator: start / middle / end frames. | |
_INTERPOLATOR_IMAGES_MAP = { | |
'frame_0': 'frame10.png', | |
'frame_1': 'frame10i11.png', | |
'frame_2': 'frame11.png', | |
} | |
def main(unused_argv): | |
"""Creates and runs a Beam pipeline to write frame triplets as a TFRecord.""" | |
# Collect the list of folder paths containing the input and golen frames. | |
pairs_list = tf.io.gfile.listdir( | |
os.path.join(_INPUT_DIR.value, _INPUT_PAIRS_FOLDERNAME.value)) | |
folder_names = [ | |
_INPUT_PAIRS_FOLDERNAME.value, _GOLDEN_FOLDERNAME.value, | |
_INPUT_PAIRS_FOLDERNAME.value | |
] | |
triplet_dicts = [] | |
for pair in pairs_list: | |
triplet_dict = { | |
image_key: os.path.join(_INPUT_DIR.value, folder, pair, image_basename) | |
for folder, (image_key, image_basename | |
) in zip(folder_names, _INTERPOLATOR_IMAGES_MAP.items()) | |
} | |
triplet_dicts.append(triplet_dict) | |
p = beam.Pipeline('DirectRunner') | |
(p | 'ReadInputTripletDicts' >> beam.Create(triplet_dicts) # pylint: disable=expression-not-assigned | |
| 'GenerateSingleExample' >> beam.ParDo( | |
util.ExampleGenerator(_INTERPOLATOR_IMAGES_MAP)) | |
| 'WriteToTFRecord' >> beam.io.tfrecordio.WriteToTFRecord( | |
file_path_prefix=_OUTPUT_TFRECORD_FILEPATH.value, | |
num_shards=_NUM_SHARDS.value, | |
coder=beam.coders.BytesCoder())) | |
result = p.run() | |
result.wait_until_finish() | |
logging.info('Succeeded in creating the output TFRecord file: \'%s@%s\'.', | |
_OUTPUT_TFRECORD_FILEPATH.value, str(_NUM_SHARDS.value)) | |
if __name__ == '__main__': | |
app.run(main) | |