Spaces:
Paused
Paused
import logging | |
import math | |
import os | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
#from diffusers.models.controlnet import ControlNetConditioningEmbedding | |
from diffusers.models.controlnets.controlnet import ControlNetConditioningEmbedding | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
import transformers | |
from accelerate import Accelerator | |
from accelerate.logging import get_logger | |
from accelerate.utils import ProjectConfiguration, set_seed | |
from tqdm.auto import tqdm | |
from src.configs.stage2_config import args | |
import diffusers | |
from diffusers import ( | |
AutoencoderKL, | |
DDPMScheduler, | |
) | |
from diffusers.optimization import get_scheduler | |
from diffusers.utils import check_min_version, is_wandb_available | |
from src.dataset.stage2_dataset import InpaintDataset, InpaintCollate_fn | |
from transformers import CLIPVisionModelWithProjection | |
from transformers import Dinov2Model | |
from src.models.stage2_inpaint_unet_2d_condition import Stage2_InapintUNet2DConditionModel | |
import glob | |
import os | |
import torch | |
from torch import nn | |
from PIL import Image, ImageOps | |
import numpy as np | |
from diffusers import UniPCMultistepScheduler | |
from src.models.stage2_inpaint_unet_2d_condition import Stage2_InapintUNet2DConditionModel | |
from torchvision import transforms | |
#from diffusers.models.controlnet import ControlNetConditioningEmbedding | |
from transformers import CLIPImageProcessor | |
from transformers import Dinov2Model | |
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel,ControlNetModel,DDIMScheduler | |
from src.pipelines.PCDMs_pipeline import PCDMsPipeline | |
#from single_extract_pose import inference_pose | |
import spaces | |
from libs.easy_dwpose import DWposeDetector | |
from libs.easy_dwpose.draw import draw_openpose | |
from libs.film import Predictor | |
from PIL import Image | |
import cv2 | |
import os | |
import gradio as gr | |
import rembg | |
import uuid | |
import gc | |
from numba import cuda | |
import requests | |
import json | |
from huggingface_hub import hf_hub_download, HfApi | |
from numba import cuda | |
from multiprocessing import Pool, Process, Queue | |
import torch.multiprocessing as mp | |
# Inputs =================================================================================================== | |
input_img = "sm.png" | |
train_imgs = ["target.png"] | |
in_vid = "walk.mp4" | |
out_vid = 'out.mp4' | |
""" | |
train_steps = 100 | |
inference_steps = 10 | |
fps = 12 | |
""" | |
debug = False | |
save_model = True | |
should_gen_vid = False | |
max_batch_size = 8 | |
max_frame_count = 200 | |
no_bg_final = True | |
def save_temp_imgs(imgs): | |
os.makedirs('temp', exist_ok=True) | |
results = [] | |
api = HfApi() | |
for i, img in enumerate(imgs): | |
#img_name = 'temp/'+str(uuid.uuid4())+'.png' | |
img_name = 'temp/'+str(i)+'.png' | |
img.save(img_name) | |
""" | |
url = 'https://tmpfiles.org/api/v1/upload' | |
try: | |
response = requests.post(url, files={'file': open(img_name, 'rb')}) | |
# Check for successful response (status code 200) | |
response.raise_for_status() | |
# Print the server's response | |
print("Status Code:", response.status_code) | |
data = response.json() | |
print("Response JSON:", data) | |
results.append(data['data']['url']) | |
except requests.exceptions.RequestException as e: | |
print(f"An error occurred: {e}") | |
""" | |
results.append('https://huggingface.co/datasets/acmyu/KeyframesAIFiles/resolve/main/'+img_name) | |
api.upload_file( | |
path_or_fileobj='temp', | |
path_in_repo='temp', | |
repo_id="acmyu/KeyframesAIFiles", | |
repo_type="dataset", | |
) | |
return results | |
def getThumbnails(imgs): | |
thumbs = [] | |
thumb_size = (512, 512) | |
for img in imgs: | |
th = img.copy() | |
th.thumbnail(thumb_size) | |
thumbs.append(th) | |
return thumbs | |
# Pose detection ============================================================================================== | |
def load_models(): | |
dwpose = DWposeDetector(device="cuda") | |
rembg_session = rembg.new_session("u2netp") | |
pcdms_model = hf_hub_download(repo_id="acmyu/PCDMs", filename="pcdms_ckpt.pt") | |
# Load scheduler | |
noise_scheduler = DDPMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1-base", subfolder="scheduler") | |
# Load model | |
image_encoder_p = Dinov2Model.from_pretrained('facebook/dinov2-giant') | |
image_encoder_g = CLIPVisionModelWithProjection.from_pretrained('laion/CLIP-ViT-H-14-laion2B-s32B-b79K')#("openai/clip-vit-base-patch32") | |
vae = AutoencoderKL.from_pretrained("stabilityai/stable-diffusion-2-1-base", subfolder="vae") | |
unet = Stage2_InapintUNet2DConditionModel.from_pretrained( | |
"stabilityai/stable-diffusion-2-1-base", | |
torch_dtype=torch.float16, | |
subfolder="unet", | |
in_channels=9, | |
low_cpu_mem_usage=False, | |
ignore_mismatched_sizes=True) | |
return dwpose, rembg_session, pcdms_model, noise_scheduler, image_encoder_p, image_encoder_g, vae, unet | |
#load_models() | |
def img_pad(img, tw, th, transparent=False): | |
#print('pad', tw, th) | |
img.thumbnail((tw, th)) | |
if transparent: | |
new_img = Image.new('RGBA', (tw, th), (0, 0, 0, 0)) | |
else: | |
new_img = Image.new("RGB", (tw, th), (0, 0, 0)) | |
left = (tw - img.width) // 2 | |
top = (th - img.height) // 2 | |
#print(left, top) | |
new_img.paste(img, (left, top)) | |
return new_img | |
def resize_pad(img, tw, th, transparent): | |
w, h = img.size | |
orig_tw = tw | |
orig_th = th | |
if tw/th > w/h: | |
tw = int(th * w/h) | |
elif tw/th < w/h: | |
th = int(tw * h/w) | |
img = img.resize((tw, th), Image.BICUBIC) | |
return img_pad(img, orig_tw, orig_th, True) | |
def resize_and_pad(img, target_img): | |
tw, th = target_img.size | |
return resize_pad(img, tw, th, False) | |
def remove_zero_pad(image): | |
image = np.array(image) | |
dummy = np.argwhere(image != 0) # assume blackground is zero | |
max_y = dummy[:, 0].max() | |
min_y = dummy[:, 0].min() | |
min_x = dummy[:, 1].min() | |
max_x = dummy[:, 1].max() | |
crop_image = image[min_y:max_y, min_x:max_x] | |
return Image.fromarray(crop_image) | |
def get_pose(img, dwpose, outfile, crop=False): | |
#pil_image = Image.open("imgs/"+img).convert("RGB") | |
#skeleton = dwpose(pil_image, output_type="np", include_hands=True, include_face=False) | |
img.thumbnail((512,512)) | |
out_img, pose = dwpose(img, include_hands=True, include_face=False) | |
#print(pose['bodies']) | |
if crop: | |
bbox = out_img.getbbox() | |
out_img = out_img.crop(bbox) | |
out_img = ImageOps.expand(out_img, border=int(out_img.width*0.2), fill=(0,0,0)) | |
return out_img, pose | |
def extract_frames(video_path, fps): | |
video_capture = cv2.VideoCapture(video_path) | |
frame_count = 0 | |
frames = [] | |
fps_in = video_capture.get(cv2.CAP_PROP_FPS) | |
fps_out = fps | |
index_in = -1 | |
index_out = -1 | |
while True: | |
success = video_capture.grab() | |
if not success: break | |
index_in += 1 | |
if frame_count > max_frame_count: | |
break | |
out_due = int(index_in / fps_in * fps_out) | |
if out_due > index_out: | |
success, frame = video_capture.retrieve() | |
if not success: | |
break | |
index_out += 1 | |
frame_count += 1 | |
frames.append(Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))) | |
video_capture.release() | |
print(f"Extracted {frame_count} frames") | |
return frames | |
def removebg(img, rembg_session, transparent=False): | |
if transparent: | |
result = Image.new('RGBA', img.size, (0, 0, 0, 0)) | |
else: | |
result = Image.new("RGB", img.size, "#ffffff") | |
out = rembg.remove(img, session=rembg_session) | |
result.paste(out, mask=out) | |
return result | |
def prepare_inputs_train(images, bg_remove, dwpose, rembg_session): | |
print("remove background", bg_remove) | |
if bg_remove: | |
images = [removebg(img, rembg_session) for img in images] | |
in_img = images[0] | |
in_pose, _ = get_pose(in_img, dwpose, "in_pose.png") | |
train_poses = [] | |
train_imgs = [resize_and_pad(img, in_img) for img in images[1:]] | |
for i, img in enumerate(train_imgs): | |
train_pose, _ = get_pose(img, dwpose, "tr_pose"+str(i)+".png") | |
train_poses.append(train_pose) | |
return in_img, in_pose, train_imgs, train_poses | |
def prepare_inputs_inference(in_img, in_vid, frames, fps, dwpose, rembg_session, bg_remove, resize_inputs, is_app=False, target_poses=None): | |
progress=gr.Progress(track_tqdm=True) | |
print("prepare_inputs_inference") | |
in_pose, _ = get_pose(in_img, dwpose, "in_pose.png") | |
print(in_vid) | |
print(frames) | |
if in_vid: | |
frames = extract_frames(in_vid, fps) | |
for f in frames: | |
f.thumbnail((512,512)) | |
print("remove background", bg_remove) | |
if bg_remove: | |
in_img = removebg(in_img, rembg_session) | |
#frames = [removebg(img, rembg_session) for img in frames] | |
if debug: | |
for i, frame in enumerate(frames): | |
frame.save("out/frame_"+str(i)+".png") | |
print("vid: ", in_vid, fps) | |
progress_bar = tqdm(range(len(frames)), initial=0, desc="Frames") | |
if not target_poses: | |
target_poses = [] | |
target_poses_coords = [] | |
max_left = max_top = 999999 | |
max_right = max_bottom = 0 | |
it = frames | |
if is_app: | |
it = progress.tqdm(frames, desc="Pose Detection") | |
for f in it: | |
tpose, tpose_coords = get_pose(f, dwpose, "tar_pose"+str(len(target_poses))+".png") | |
#print(tpose_coords) | |
coords = {} | |
for k in tpose_coords: | |
if k == 'bodies_multi': | |
coords['bodies'] = tpose_coords[k].tolist() | |
elif k in ['hands']: | |
coords[k] = tpose_coords[k].tolist() | |
elif k in ['num_candidates']: | |
coords[k] = tpose_coords[k] | |
#print(coords) | |
target_poses.append(tpose) | |
target_poses_coords.append(json.dumps(coords)) | |
progress_bar.update(1) | |
target_poses_cropped = [] | |
for tpose in target_poses: | |
if resize_inputs: | |
bbox = tpose.getbbox() | |
left, top, right, bottom = bbox | |
max_left = min(max_left, left) | |
max_top = min(max_top, top) | |
max_right = max(max_right, right) | |
max_bottom = max(max_bottom, bottom) | |
tpose = tpose.crop((max_left, max_top, max_right, max_bottom)) | |
tpose = ImageOps.expand(tpose, border=int(tpose.width*0.2), fill=(0,0,0)) | |
tpose = resize_and_pad(tpose, in_img) | |
if debug: | |
tpose.save("out/"+"tar_pose"+str(len(target_poses_cropped))+".png") | |
target_poses_cropped.append(tpose) | |
#target_poses_cropped[0].save("pose.png") | |
return in_img, target_poses_cropped, in_pose, target_poses_coords, frames | |
def prepare_inputs(images, in_vid, fps, bg_remove, dwpose, rembg_session, resize_inputs, is_app=False): | |
in_img, in_pose, train_imgs, train_poses = prepare_inputs_train(images, bg_remove, dwpose, rembg_session) | |
in_img, target_poses_cropped, _, _, _ = prepare_inputs_inference(in_img, in_vid, [], fps, dwpose, rembg_session, bg_remove, resize_inputs, is_app) | |
return in_img, in_pose, train_imgs, train_poses, target_poses_cropped | |
# Training =================================================================================================== | |
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
check_min_version("0.18.0.dev0") | |
logger = get_logger(__name__) | |
class ImageProjModel_p(torch.nn.Module): | |
"""SD model with image prompt""" | |
def __init__(self, in_dim, hidden_dim, out_dim, dropout = 0.): | |
super().__init__() | |
self.net = nn.Sequential( | |
nn.Linear(in_dim, hidden_dim), | |
nn.GELU(), | |
nn.Dropout(dropout), | |
nn.LayerNorm(hidden_dim), | |
nn.Linear(hidden_dim, out_dim), | |
nn.Dropout(dropout) | |
) | |
def forward(self, x): | |
return self.net(x) | |
class ImageProjModel_g(torch.nn.Module): | |
"""SD model with image prompt""" | |
def __init__(self, in_dim, hidden_dim, out_dim, dropout = 0.): | |
super().__init__() | |
self.net = nn.Sequential( | |
nn.Linear(in_dim, hidden_dim), | |
nn.GELU(), | |
nn.Dropout(dropout), | |
nn.LayerNorm(hidden_dim), | |
nn.Linear(hidden_dim, out_dim), | |
nn.Dropout(dropout) | |
) | |
def forward(self, x): # b, 257,1280 | |
return self.net(x) | |
class SDModel(torch.nn.Module): | |
"""SD model with image prompt""" | |
def __init__(self, unet) -> None: | |
super().__init__() | |
self.image_proj_model_p = ImageProjModel_p(in_dim=1536, hidden_dim=768, out_dim=1024) | |
self.unet = unet | |
self.pose_proj = ControlNetConditioningEmbedding( | |
conditioning_embedding_channels=320, | |
block_out_channels=(16, 32, 96, 256), | |
conditioning_channels=3) | |
def forward(self, noisy_latents, timesteps, simg_f_p, timg_f_g, pose_f): | |
extra_image_embeddings_p = self.image_proj_model_p(simg_f_p) | |
extra_image_embeddings_g = timg_f_g | |
print(extra_image_embeddings_p.size()) | |
print(extra_image_embeddings_g.size()) | |
encoder_image_hidden_states = torch.cat([extra_image_embeddings_p ,extra_image_embeddings_g], dim=1) | |
pose_cond = self.pose_proj(pose_f) | |
pred_noise = self.unet(noisy_latents, timesteps, class_labels=timg_f_g, encoder_hidden_states=encoder_image_hidden_states,my_pose_cond=pose_cond).sample | |
return pred_noise | |
def load_training_checkpoint(model, pcdms_model, tag=None, **kwargs): | |
#model_sd = torch.load(load_dir, map_location="cpu")["module"] | |
model_sd = torch.load( | |
pcdms_model, | |
map_location="cpu" | |
)["module"] | |
image_proj_model_dict = {} | |
pose_proj_dict = {} | |
unet_dict = {} | |
for k in model_sd.keys(): | |
if k.startswith("pose_proj"): | |
pose_proj_dict[k.replace("pose_proj.", "")] = model_sd[k] | |
elif k.startswith("image_proj_model_p"): | |
image_proj_model_dict[k.replace("image_proj_model_p.", "")] = model_sd[k] | |
elif k.startswith("image_proj_model."): | |
image_proj_model_dict[k.replace("image_proj_model.", "")] = model_sd[k] | |
elif k.startswith("unet"): | |
unet_dict[k.replace("unet.", "")] = model_sd[k] | |
else: | |
print(k) | |
model.pose_proj.load_state_dict(pose_proj_dict) | |
model.image_proj_model_p.load_state_dict(image_proj_model_dict) | |
model.unet.load_state_dict(unet_dict) | |
return model, 0, 0 | |
def checkpoint_model(checkpoint_folder, ckpt_id, model, epoch, last_global_step, **kwargs): | |
"""Utility function for checkpointing model + optimizer dictionaries | |
The main purpose for this is to be able to resume training from that instant again | |
""" | |
checkpoint_state_dict = { | |
"epoch": epoch, | |
"last_global_step": last_global_step, | |
} | |
# Add extra kwargs too | |
checkpoint_state_dict.update(kwargs) | |
success = model.save_checkpoint(checkpoint_folder, ckpt_id, checkpoint_state_dict) | |
status_msg = f"checkpointing: checkpoint_folder={checkpoint_folder}, ckpt_id={ckpt_id}" | |
if success: | |
logging.info(f"Success {status_msg}") | |
else: | |
logging.warning(f"Failure {status_msg}") | |
return | |
def train(modelId, in_image, in_pose, train_images, train_poses, train_steps, pcdms_model, noise_scheduler, image_encoder_p, image_encoder_g, vae, unet, finetune=True, is_app=False): | |
logging_dir = 'outputs/logging' | |
print('start train') | |
progress=gr.Progress(track_tqdm=True) | |
accelerator = Accelerator( | |
log_with=args.report_to, | |
project_dir=logging_dir, | |
mixed_precision=args.mixed_precision, | |
gradient_accumulation_steps=args.gradient_accumulation_steps | |
) | |
# Make one log on every process with the configuration for debugging. | |
#logging.basicConfig( | |
# format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
# datefmt="%m/%d/%Y %H:%M:%S", | |
# level=logging.INFO, ) | |
print(accelerator.state) | |
if accelerator.is_local_main_process: | |
transformers.utils.logging.set_verbosity_warning() | |
diffusers.utils.logging.set_verbosity_info() | |
else: | |
transformers.utils.logging.set_verbosity_error() | |
diffusers.utils.logging.set_verbosity_error() | |
# If passed along, set the training seed now. | |
set_seed(42) | |
# Handle the repository creation | |
if accelerator.is_main_process: | |
os.makedirs('outputs', exist_ok=True) | |
""" | |
unet = Stage2_InapintUNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-2-1-base", subfolder="unet", | |
in_channels=9, class_embed_type="projection" ,projection_class_embeddings_input_dim=1024, | |
low_cpu_mem_usage=False, ignore_mismatched_sizes=True) | |
""" | |
image_encoder_p.requires_grad_(False) | |
image_encoder_g.requires_grad_(False) | |
vae.requires_grad_(False) | |
sd_model = SDModel(unet=unet) | |
sd_model.train() | |
if args.gradient_checkpointing: | |
sd_model.enable_gradient_checkpointing() | |
# Enable TF32 for faster training on Ampere GPUs, | |
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
if args.allow_tf32: | |
torch.backends.cuda.matmul.allow_tf32 = True | |
learning_rate = 1e-4 | |
train_batch_size = min(len(train_images), max_batch_size) #len(train_images) % 16 | |
# Optimizer creation | |
params_to_optimize = sd_model.parameters() | |
optimizer = torch.optim.AdamW( | |
params_to_optimize, | |
lr=learning_rate, | |
betas=(args.adam_beta1, args.adam_beta2), | |
weight_decay=args.adam_weight_decay, | |
eps=args.adam_epsilon, | |
) | |
inputs = [{ | |
"source_image": in_image, | |
"source_pose": in_pose, | |
"target_image": timg, | |
"target_pose": tpose, | |
} for timg, tpose in zip(train_images, train_poses)] | |
""" | |
inputs = {[ | |
"source_image": Image.open('imgs/sm.png'), | |
"source_pose": Image.open('imgs/sm_pose.jpg'), | |
"target_image": Image.open('imgs/target.png'), | |
"target_pose": Image.open('imgs/target_pose.jpg'), | |
]} | |
""" | |
#print(inputs) | |
dataset = InpaintDataset( | |
inputs, | |
'imgs/', | |
size=(args.img_width, args.img_height), # w h | |
imgp_drop_rate=0.1, | |
imgg_drop_rate=0.1, | |
) | |
""" | |
dataset = InpaintDataset( | |
args.json_path, | |
args.image_root_path, | |
size=(args.img_width, args.img_height), # w h | |
imgp_drop_rate=0.1, | |
imgg_drop_rate=0.1, | |
) | |
""" | |
train_sampler = torch.utils.data.distributed.DistributedSampler( | |
dataset, num_replicas=accelerator.num_processes, rank=accelerator.process_index, shuffle=True) | |
train_dataloader = torch.utils.data.DataLoader( | |
dataset, | |
sampler=train_sampler, | |
collate_fn=InpaintCollate_fn, | |
batch_size=train_batch_size, | |
num_workers=0,) | |
# Scheduler and math around the number of training steps. | |
overrode_max_train_steps = False | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
if args.max_train_steps is None: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
overrode_max_train_steps = True | |
args.max_train_steps = train_steps | |
lr_scheduler = get_scheduler( | |
args.lr_scheduler, | |
optimizer=optimizer, | |
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, | |
num_training_steps=args.max_train_steps * accelerator.num_processes, | |
num_cycles=args.lr_num_cycles, | |
power=args.lr_power, | |
) | |
# Prepare everything with our `accelerator`. | |
sd_model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(sd_model, optimizer, train_dataloader, lr_scheduler) | |
# For mixed precision training we cast the text_encoder and vae weights to half-precision | |
# as these models are only used for inference, keeping weights in full precision is not required. | |
weight_dtype = torch.float32 | |
""" | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
""" | |
# Move vae, unet and text_encoder to device and cast to weight_dtype | |
vae.to(accelerator.device, dtype=weight_dtype) | |
sd_model.unet.to(accelerator.device, dtype=weight_dtype) | |
image_encoder_p.to(accelerator.device, dtype=weight_dtype) | |
image_encoder_g.to(accelerator.device, dtype=weight_dtype) | |
# We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
if overrode_max_train_steps: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
# Afterwards we recalculate our number of training epochs | |
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
args.num_train_epochs = train_steps | |
# Train! | |
total_batch_size = ( | |
train_batch_size | |
* accelerator.num_processes | |
* args.gradient_accumulation_steps | |
) | |
print("***** Running training *****") | |
print(f" Num batches each epoch = {len(train_dataloader)}") | |
print(f" Num Epochs = {args.num_train_epochs}") | |
print(f" Instantaneous batch size per device = {train_batch_size}") | |
print( | |
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}" | |
) | |
print(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
print(f" Total optimization steps = {args.max_train_steps}") | |
if args.resume_from_checkpoint: | |
# New Code # | |
# Loads the DeepSpeed checkpoint from the specified path | |
prior_model, last_epoch, last_global_step = load_training_checkpoint( | |
sd_model, | |
pcdms_model, | |
**{"load_optimizer_states": True, "load_lr_scheduler_states": True}, | |
) | |
print(f"Resumed from checkpoint: {args.resume_from_checkpoint}, global step: {last_global_step}") | |
starting_epoch = last_epoch | |
global_steps = last_global_step | |
sd_model = sd_model | |
else: | |
global_steps = 0 | |
starting_epoch = 0 | |
sd_model = sd_model | |
progress_bar = tqdm(range(global_steps, args.max_train_steps), initial=global_steps, desc="Steps", | |
# Only show the progress bar once on each machine. | |
disable=not accelerator.is_local_main_process, ) | |
bsz = train_batch_size | |
if not finetune or train_steps == 0: | |
accelerator.wait_for_everyone() | |
accelerator.end_training() | |
checkpoint_state_dict = { | |
"epoch": 0, | |
"module": {k: v.cpu() for k, v in sd_model.state_dict().items()}, #sd_model.state_dict(), | |
} | |
torch.save(checkpoint_state_dict, modelId+".pt") | |
del sd_model | |
gc.collect() | |
torch.cuda.empty_cache() | |
return | |
#return {k: v.cpu() for k, v in sd_model.state_dict().items()} | |
it = range(starting_epoch, args.num_train_epochs) | |
if is_app: | |
it = progress.tqdm(it, desc="Fine-tuning") | |
for epoch in it: | |
for step, batch in enumerate(train_dataloader): | |
with accelerator.accumulate(sd_model): | |
with torch.no_grad(): | |
# Convert images to latent space | |
latents = vae.encode(batch["source_target_image"].to(dtype=weight_dtype)).latent_dist.sample() | |
latents = latents * vae.config.scaling_factor | |
# Get the masked image latents | |
masked_latents = vae.encode(batch["vae_source_mask_image"].to(dtype=weight_dtype)).latent_dist.sample() | |
masked_latents = masked_latents * vae.config.scaling_factor | |
bsz = batch["target_image"].size(dim=0) | |
# mask | |
mask1 = torch.ones((bsz, 1, int(args.img_height / 8), int(args.img_width / 8))).to(accelerator.device, dtype=weight_dtype) | |
mask0 = torch.zeros((bsz, 1, int(args.img_height / 8), int(args.img_width / 8))).to(accelerator.device, dtype=weight_dtype) | |
mask = torch.cat([mask1, mask0], dim=3) | |
# Get the image embedding for conditioning | |
cond_image_feature_p = image_encoder_p(batch["source_image"].to(accelerator.device, dtype=weight_dtype)) | |
cond_image_feature_p = (cond_image_feature_p.last_hidden_state) | |
cond_image_feature_g = image_encoder_g(batch["target_image"].to(accelerator.device, dtype=weight_dtype), ).image_embeds | |
cond_image_feature_g =cond_image_feature_g.unsqueeze(1) | |
# Sample noise that we'll add to the latents | |
noise = torch.randn_like(latents) | |
if args.noise_offset: | |
# https://www.crosslabs.org//blog/diffusion-with-offset-noise | |
noise += args.noise_offset * torch.randn( | |
(latents.shape[0], latents.shape[1], 1, 1), device=latents.device | |
) | |
# Sample a random timestep for each image | |
#timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (train_batch_size,),device=latents.device, ) | |
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,),device=latents.device, ) | |
timesteps = timesteps.long() | |
# Add noise to the latents according to the noise magnitude at each timestep (this is the forward diffusion process) | |
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | |
#print(noisy_latents.size(), mask.size(), masked_latents.size()) | |
noisy_latents = torch.cat([noisy_latents, mask, masked_latents], dim=1) | |
# Get the text embedding for conditioning | |
cond_pose = batch["source_target_pose"].to(dtype=weight_dtype) | |
#print(noisy_latents.size()) | |
#print(cond_image_feature_p.size()) | |
#print(cond_image_feature_g.size()) | |
#print(cond_pose.size()) | |
# Predict the noise residual | |
model_pred = sd_model(noisy_latents, timesteps, cond_image_feature_p,cond_image_feature_g, cond_pose, ) | |
# Get the target for loss depending on the prediction type | |
if noise_scheduler.config.prediction_type == "epsilon": | |
target = noise | |
elif noise_scheduler.config.prediction_type == "v_prediction": | |
target = noise_scheduler.get_velocity(latents, noise, timesteps) | |
else: | |
raise ValueError( | |
f"Unknown prediction type {noise_scheduler.config.prediction_type}" | |
) | |
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | |
accelerator.backward(loss) | |
if accelerator.sync_gradients: | |
params_to_clip = sd_model.parameters() | |
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) | |
optimizer.step() | |
lr_scheduler.step() | |
optimizer.zero_grad(set_to_none=args.set_grads_to_none) | |
# Checks if the accelerator has performed an optimization step behind the scenes | |
if accelerator.sync_gradients: | |
global_steps += 1 | |
if global_steps >= args.max_train_steps: | |
break | |
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | |
print(logs) | |
progress_bar.set_postfix(**logs) | |
progress_bar.update(1) | |
# Create the pipeline using the trained modules and save it. | |
accelerator.wait_for_everyone() | |
accelerator.end_training() | |
sd_model.unet.cpu() | |
sd_model.cpu() | |
del vae | |
del image_encoder_p | |
del image_encoder_g | |
if save_model: #if global_steps % args.checkpointing_steps == 0 or global_steps == args.max_train_steps: | |
print('saving', modelId) | |
checkpoint_state_dict = { | |
"epoch": 0, | |
"module": {k: v.cpu() for k, v in sd_model.state_dict().items()}, #sd_model.state_dict(), | |
} | |
print(list(sd_model.state_dict().keys())[:20]) | |
torch.save(checkpoint_state_dict, modelId+".pt") | |
del sd_model | |
gc.collect() | |
torch.cuda.empty_cache() | |
print('done train') | |
print(torch.cuda.memory_allocated()/1024**2) | |
return | |
del sd_model | |
gc.collect() | |
torch.cuda.empty_cache() | |
return {k: v.cpu() for k, v in sd_model.state_dict().items()} | |
# Pose-transfer =================================================================================================== | |
device = "cuda" | |
class ImageProjModel(torch.nn.Module): | |
"""SD model with image prompt""" | |
def __init__(self, in_dim, hidden_dim, out_dim, dropout = 0.): | |
super().__init__() | |
self.net = nn.Sequential( | |
nn.Linear(in_dim, hidden_dim), | |
nn.GELU(), | |
nn.Dropout(dropout), | |
nn.LayerNorm(hidden_dim), | |
nn.Linear(hidden_dim, out_dim), | |
nn.Dropout(dropout) | |
) | |
def forward(self, x): | |
return self.net(x) | |
def image_grid(imgs, rows, cols): | |
assert len(imgs) == rows * cols | |
w, h = imgs[0].size | |
print(w, h) | |
grid = Image.new("RGB", size=(cols * w, rows * h)) | |
grid_w, grid_h = grid.size | |
for i, img in enumerate(imgs): | |
grid.paste(img, box=(i % cols * w, i // cols * h)) | |
return grid | |
def load_mydict(modelId, finetuned_model): | |
if save_model: | |
model_ckpt_path = modelId+'.pt' | |
model_sd = torch.load(model_ckpt_path, map_location="cpu")["module"] | |
else: | |
model_sd = finetuned_model #torch.load(model_ckpt_path, map_location="cpu")["module"] | |
image_proj_model_dict = {} | |
pose_proj_dict = {} | |
unet_dict = {} | |
for k in model_sd.keys(): | |
if k.startswith("pose_proj"): | |
pose_proj_dict[k.replace("pose_proj.", "")] = model_sd[k] | |
elif k.startswith("image_proj_model_p"): | |
image_proj_model_dict[k.replace("image_proj_model_p.", "")] = model_sd[k] | |
elif k.startswith("image_proj_model"): | |
image_proj_model_dict[k.replace("image_proj_model.", "")] = model_sd[k] | |
elif k.startswith("unet"): | |
unet_dict[k.replace("unet.", "")] = model_sd[k] | |
else: | |
print(k) | |
return image_proj_model_dict, pose_proj_dict, unet_dict | |
def inference(modelId, in_image, in_pose, target_poses, inference_steps, finetuned_model, vae, unet, image_encoder, is_app=False): | |
print('start inference') | |
progress=gr.Progress(track_tqdm=True) | |
if not save_model: | |
finetuned_model = {k: v.cuda() for k, v in finetuned_model.items()} | |
device = "cuda" | |
pretrained_model_name_or_path ="stabilityai/stable-diffusion-2-1-base" | |
image_encoder_path = "facebook/dinov2-giant" | |
#model_ckpt_path = "./pcdms_ckpt.pt" # ckpt path | |
model_ckpt_path = modelId+'.pt' | |
clip_image_processor = CLIPImageProcessor() | |
img_transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]), | |
]) | |
generator = torch.Generator(device=device).manual_seed(42) | |
""" | |
unet = Stage2_InapintUNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, torch_dtype=torch.float16,subfolder="unet",in_channels=9, low_cpu_mem_usage=False, ignore_mismatched_sizes=True).to(device) | |
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path,subfolder="vae").to(device, dtype=torch.float16) | |
image_encoder = Dinov2Model.from_pretrained(image_encoder_path).to(device, dtype=torch.float16) | |
""" | |
noise_scheduler = DDIMScheduler( | |
num_train_timesteps=1000, | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
steps_offset=1, | |
) | |
unet = unet.to(device, dtype=torch.float16) | |
vae = vae.to(device, dtype=torch.float16) | |
image_encoder = image_encoder.to(device, dtype=torch.float16) | |
image_proj_model = ImageProjModel(in_dim=1536, hidden_dim=768, out_dim=1024).to(device).to(dtype=torch.float16) | |
pose_proj_model = ControlNetConditioningEmbedding( | |
conditioning_embedding_channels=320, | |
block_out_channels=(16, 32, 96, 256), | |
conditioning_channels=3).to(device).to(dtype=torch.float16) | |
# load weight | |
print('loading', modelId) | |
image_proj_model_dict, pose_proj_dict, unet_dict = load_mydict(modelId, finetuned_model) | |
print('loaded', modelId) | |
image_proj_model.load_state_dict(image_proj_model_dict) | |
pose_proj_model.load_state_dict(pose_proj_dict) | |
unet.load_state_dict(unet_dict) | |
pipe = PCDMsPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base", unet=unet, torch_dtype=torch.float16, scheduler=noise_scheduler,feature_extractor=None,safety_checker=None).to(device) | |
print('====================== model load finish ===================') | |
results = [] | |
progress_bar = tqdm(range(len(target_poses)), initial=0, desc="Frames") | |
it = target_poses | |
if is_app: | |
it = progress.tqdm(it, desc="Pose Transfer") | |
for pose in it: | |
num_samples = 1 | |
image_size = (512, 512) | |
s_img_path = 'imgs/'+input_img # input image 1 | |
#target_pose_img = 'imgs/pose_'+str(n)+'.png' # input image 2 | |
#t_pose = inference_pose(target_pose_img, image_size=(image_size[1], image_size[0])).resize(image_size, Image.BICUBIC) | |
#t_pose = Image.open(target_pose_img).convert("RGB").resize((image_size), Image.BICUBIC) | |
t_pose = pose.convert("RGB").resize((image_size), Image.BICUBIC) | |
#t_pose = resize_and_pad(pose.convert("RGB")) | |
#s_img = Image.open(s_img_path) | |
width_orig, height_orig = in_image.size | |
s_img = in_image.convert("RGB").resize(image_size, Image.BICUBIC) | |
#s_img = resize_and_pad(in_image.convert("RGB")) | |
black_image = Image.new("RGB", s_img.size, (0, 0, 0)).resize(image_size, Image.BICUBIC) | |
s_img_t_mask = Image.new("RGB", (s_img.width * 2, s_img.height)) | |
s_img_t_mask.paste(s_img, (0, 0)) | |
s_img_t_mask.paste(black_image, (s_img.width, 0)) | |
#s_pose = inference_pose(s_img_path, image_size=(image_size[1], image_size[0])).resize(image_size, Image.BICUBIC) | |
#s_pose = Image.open('imgs/sm_pose.jpg').convert("RGB").resize(image_size, Image.BICUBIC) | |
s_pose = in_pose.convert("RGB").resize(image_size, Image.BICUBIC) | |
#s_pose = resize_and_pad(in_pose.convert("RGB")) | |
print('source image width: {}, height: {}'.format(s_pose.width, s_pose.height)) | |
#t_pose = Image.open(target_pose_img).convert("RGB").resize((image_size), Image.BICUBIC) | |
st_pose = Image.new("RGB", (s_pose.width * 2, s_pose.height)) | |
st_pose.paste(s_pose, (0, 0)) | |
st_pose.paste(t_pose, (s_pose.width, 0)) | |
clip_s_img = clip_image_processor(images=s_img, return_tensors="pt").pixel_values | |
vae_image = torch.unsqueeze(img_transform(s_img_t_mask), 0) | |
cond_st_pose = torch.unsqueeze(img_transform(st_pose), 0) | |
mask1 = torch.ones((1, 1, int(image_size[0] / 8), int(image_size[1] / 8))).to(device, dtype=torch.float16) | |
mask0 = torch.zeros((1, 1, int(image_size[0] / 8), int(image_size[1] / 8))).to(device, dtype=torch.float16) | |
mask = torch.cat([mask1, mask0], dim=3) | |
with torch.inference_mode(): | |
cond_pose = pose_proj_model(cond_st_pose.to(dtype=torch.float16, device=device)) | |
simg_mask_latents = pipe.vae.encode(vae_image.to(device, dtype=torch.float16)).latent_dist.sample() | |
simg_mask_latents = simg_mask_latents * 0.18215 | |
images_embeds = image_encoder(clip_s_img.to(device, dtype=torch.float16)).last_hidden_state | |
image_prompt_embeds = image_proj_model(images_embeds) | |
uncond_image_prompt_embeds = image_proj_model(torch.zeros_like(images_embeds)) | |
bs_embed, seq_len, _ = image_prompt_embeds.shape | |
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1) | |
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1) | |
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1) | |
output, _ = pipe( | |
simg_mask_latents= simg_mask_latents, | |
mask = mask, | |
cond_pose = cond_pose, | |
prompt_embeds=image_prompt_embeds, | |
negative_prompt_embeds=uncond_image_prompt_embeds, | |
height=image_size[1], | |
width=image_size[0]*2, | |
num_images_per_prompt=num_samples, | |
guidance_scale=2.0, | |
generator=generator, | |
num_inference_steps=inference_steps, | |
) | |
output = output.images[-1] | |
result = output.crop((image_size[0], 0, image_size[0] * 2, image_size[1])) | |
result = result.resize((width_orig, height_orig), Image.BICUBIC) | |
#result = remove_zero_pad(result) | |
if debug: | |
result.save('out/'+str(len(results))+'.png') | |
results.append(result) | |
progress_bar.update(1) | |
del unet | |
del vae | |
del image_encoder | |
del image_proj_model | |
del pose_proj_model | |
if not save_model: | |
del finetuned_model | |
gc.collect() | |
torch.cuda.empty_cache() | |
print(torch.cuda.memory_allocated()/1024**2) | |
return results | |
def gen_vid(frames, video_name, fps, codec): | |
progress=gr.Progress(track_tqdm=True) | |
frame = cv2.cvtColor(np.array(frames[0]), cv2.COLOR_RGB2BGR) | |
height, width, layers = frame.shape | |
#video = cv2.VideoWriter(video_name, 0, 1, (width,height)) | |
if codec == 'mp4': | |
video = cv2.VideoWriter(video_name, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height)) | |
else: | |
video = cv2.VideoWriter(video_name, cv2.VideoWriter_fourcc(*'VP90'), fps, (width, height)) | |
for r in progress.tqdm(frames, desc="Creating video"): | |
image = cv2.cvtColor(np.array(r), cv2.COLOR_RGB2BGR) | |
video.write(image) | |
#cv2.destroyAllWindows() | |
#video.release() | |
def run(images, video_path, train_steps=100, inference_steps=10, fps=12, bg_remove=False, resize_inputs=True, finetune=True, is_app=False): | |
print("==== Load Models ====") | |
dwpose, rembg_session, pcdms_model, noise_scheduler, image_encoder_p, image_encoder_g, vae, unet = load_models() | |
print("==== Pose Detection ====") | |
in_img, in_pose, train_imgs, train_poses, target_poses = prepare_inputs(images, video_path, fps, bg_remove, dwpose, rembg_session, resize_inputs, is_app=is_app) | |
if save_model: | |
train("fine_tuned_pcdms", in_img, in_pose, train_imgs, train_poses, train_steps, pcdms_model, noise_scheduler, image_encoder_p, image_encoder_g, vae, unet, finetune, is_app) | |
print('next') | |
results = inference("fine_tuned_pcdms", in_img, in_pose, target_poses, inference_steps, None, vae, unet, image_encoder_p, is_app) | |
else: | |
print("==== Finetuning ====") | |
finetuned_model = train("fine_tuned_pcdms", in_img, in_pose, train_imgs, train_poses, train_steps, pcdms_model, noise_scheduler, image_encoder_p, image_encoder_g, vae, unet, finetune, is_app) | |
print("==== Pose Transfer ====") | |
results = inference("fine_tuned_pcdms", in_img, in_pose, target_poses, inference_steps, finetuned_model, vae, unet, image_encoder_p, is_app) | |
return results | |
def run_train_impl(images, train_steps=100, modelId="fine_tuned_pcdms", bg_remove=True, resize_inputs=True, finetune=True): | |
finetune=True | |
is_app=True | |
images = [img[0] for img in images] | |
dwpose, rembg_session, pcdms_model, noise_scheduler, image_encoder_p, image_encoder_g, vae, unet = load_models() | |
if resize_inputs: | |
resize = 'target' | |
else: | |
resize = 'none' | |
in_img, in_pose, train_imgs, train_poses = prepare_inputs_train(images, bg_remove, dwpose, rembg_session) | |
train(modelId, in_img, in_pose, train_imgs, train_poses, train_steps, pcdms_model, noise_scheduler, image_encoder_p, image_encoder_g, vae, unet, finetune, is_app) | |
gc.collect() | |
torch.cuda.empty_cache() | |
def run_train(images, train_steps=100, modelId="fine_tuned_pcdms", bg_remove=True, resize_inputs=True): | |
run_train_impl(images, train_steps, modelId, bg_remove, resize_inputs) | |
""" | |
mp.set_start_method('spawn', force=True) | |
p = mp.Process(target=run_train_impl, args=(images, train_steps, modelId, bg_remove, resize_inputs)) | |
p.start() | |
p.join() | |
""" | |
def run_inference_impl(images, video_path, frames, train_steps=100, inference_steps=10, fps=12, modelId="fine_tuned_pcdms", img_width=1920, img_height=1080, bg_remove=True, resize_inputs=True): | |
finetune=True | |
is_app=True | |
dwpose, rembg_session, pcdms_model, noise_scheduler, image_encoder_p, image_encoder_g, vae, unet = load_models() | |
if not os.path.exists(modelId+".pt"): | |
run_train(images, train_steps, modelId, bg_remove, resize_inputs) | |
images = [img[0] for img in images] | |
in_img = images[0] | |
if frames: | |
frames = [img[0] for img in frames] | |
in_img, target_poses, in_pose, target_poses_coords, orig_frames = prepare_inputs_inference(in_img, video_path, frames, fps, dwpose, rembg_session, bg_remove, resize_inputs, is_app) | |
#target_poses[0].save('inf_pose.png') | |
results = inference(modelId, in_img, in_pose, target_poses, inference_steps, None, vae, unet, image_encoder_p, is_app) | |
#urls = save_temp_imgs(results) | |
if should_gen_vid: | |
if debug: | |
gen_vid(results, out_vid+'.mp4', fps, 'mp4') | |
else: | |
gen_vid(results, out_vid+'.webm', fps, 'webm') | |
# postprocessing | |
if no_bg_final: | |
results = [removebg(img, rembg_session, True) for img in results] | |
#results = [img_pad(img, img_width, img_height, True) for img in results] | |
print("Done!") | |
gc.collect() | |
torch.cuda.empty_cache() | |
return out_vid+'.webm', results, getThumbnails(results), target_poses_coords, orig_frames | |
def run_inference(images, video_path, frames, train_steps=100, inference_steps=10, fps=12, modelId="fine_tuned_pcdms", img_width=1920, img_height=1080, bg_remove=True, resize_inputs=True): | |
return run_inference_impl(images, video_path, frames, train_steps, inference_steps, fps, modelId, img_width, img_height, bg_remove, resize_inputs) | |
def generate_frame(images, target_poses, train_steps=100, inference_steps=10, modelId="fine_tuned_pcdms", img_width=1920, img_height=1080, bg_remove=True, resize_inputs=True): | |
finetune=True | |
is_app=True | |
dwpose, rembg_session, pcdms_model, noise_scheduler, image_encoder_p, image_encoder_g, vae, unet = load_models() | |
if not os.path.exists(modelId+".pt"): | |
run_train(images, train_steps, modelId, bg_remove, resize_inputs) | |
images = [img[0] for img in images] | |
in_img = images[0] | |
in_pose, _ = get_pose(in_img, dwpose, "in_pose.png") | |
print(target_poses) | |
target_poses = json.loads(target_poses) | |
target_poses = [Image.fromarray(draw_openpose(pose, height=img_height, width=img_width, include_hands=True, include_face=False)) for pose in target_poses] | |
in_img, target_poses, in_pose, target_poses_coords, orig_frames = prepare_inputs_inference(in_img, None, [], 12, dwpose, rembg_session, bg_remove, resize_inputs, is_app, target_poses) | |
#target_poses[0].save('gen_pose.png') | |
results = inference(modelId, in_img, in_pose, target_poses, inference_steps, None, vae, unet, image_encoder_p, is_app) | |
#urls = save_temp_imgs(results) | |
# postprocessing | |
if no_bg_final: | |
results = [removebg(img, rembg_session, True) for img in results] | |
#results = [img_pad(img, img_width, img_height, True) for img in results] | |
print("Done!") | |
gc.collect() | |
torch.cuda.empty_cache() | |
results[0].save('result.png') | |
return results, getThumbnails(results) | |
def run_generate_frame(images, target_poses, train_steps=100, inference_steps=10, modelId="fine_tuned_pcdms", img_width=1920, img_height=1080, bg_remove=True, resize_inputs=True): | |
return generate_frame(images, target_poses, train_steps, inference_steps, modelId, img_width, img_height, bg_remove, resize_inputs) | |
def run_app(images, video_path, train_steps=100, inference_steps=10, fps=12, bg_remove=False, resize_inputs=True): | |
images = [img[0] for img in images] | |
results = run(images, video_path, train_steps, inference_steps, fps, bg_remove, resize_inputs, finetune=True, is_app=True) | |
print("==== Video generation ====") | |
out_vid = f"out_{uuid.uuid4()}" | |
if debug: | |
gen_vid(results, out_vid+'.mp4', fps, 'mp4') | |
else: | |
gen_vid(results, out_vid+'.webm', fps, 'webm') | |
print("Done!") | |
return out_vid+'.webm', results | |
def run_eval(images_orig, video_path, train_steps=100, inference_steps=10, fps=12, modelId="fine_tuned_pcdms", img_width=1920, img_height=1080, bg_remove=False, resize_inputs=False): | |
is_app=False | |
dwpose, rembg_session, pcdms_model, noise_scheduler, image_encoder_p, image_encoder_g, vae, unet = load_models() | |
images = [img[0] for img in images_orig] | |
in_img, in_pose, train_imgs, train_poses = prepare_inputs_train(images, bg_remove, dwpose, rembg_session) | |
in_img, target_poses, in_pose, _, _ = prepare_inputs_inference(in_img, video_path, [], fps, dwpose, rembg_session, bg_remove, resize_inputs, is_app) | |
target_poses = target_poses[:max_frame_count] | |
#train_steps = 3 | |
finetune = False | |
train(modelId, in_img, in_pose, train_imgs, train_poses, train_steps, pcdms_model, noise_scheduler, image_encoder_p, image_encoder_g, vae, unet, finetune, is_app) | |
results_base = inference(modelId, in_img, in_pose, target_poses, inference_steps, None, vae, unet, image_encoder_p, is_app) | |
finetune = True | |
train(modelId, in_img, in_pose, train_imgs, train_poses, train_steps, pcdms_model, noise_scheduler, image_encoder_p, image_encoder_g, vae, unet, finetune, is_app) | |
results = inference(modelId, in_img, in_pose, target_poses, inference_steps, None, vae, unet, image_encoder_p, is_app) | |
gc.collect() | |
torch.cuda.empty_cache() | |
return results, results_base | |
def interpolate_frames(frame1, frame2, times_to_interp, remove_bg): | |
film = Predictor() | |
film.setup() | |
thumb_size = (512, 512) | |
width, height = frame1.size | |
frame1.thumbnail(thumb_size) | |
frame2.thumbnail(thumb_size) | |
out_vid = film.predict(frame1, frame2, int(times_to_interp)) | |
print(out_vid) | |
if str(out_vid).endswith('.mp4'): | |
results = extract_frames(out_vid, 30) | |
results = results[1:-1] | |
else: | |
results = [Image.open(out_vid)] | |
print(results) | |
if remove_bg: | |
rembg_session = rembg.new_session("u2netp") | |
results = [removebg(img, rembg_session, True) for img in results] | |
for r in results: | |
r.thumbnail((width, height)) | |
del film | |
return results, getThumbnails(results) | |
def run_interpolate_frames(frame1, frame2, times_to_interp, remove_bg): | |
with Pool() as pool: | |
results = pool.starmap(interpolate_frames, [(frame1, frame2, times_to_interp, remove_bg)]) | |
return results[0] | |
def resize_images(images, width, height): | |
images = [img[0] for img in images] | |
return [resize_pad(img, width, height, True) for img in images] | |