Spaces:
Paused
Paused
from src.controlnet_aux import DWposeDetector | |
from PIL import Image | |
import torchvision.transforms as transforms | |
import torch | |
def init_dwpose_detector(device): | |
# specify configs, ckpts and device, or it will be downloaded automatically and use cpu by default | |
det_config = './src/configs/yolox_l_8xb8-300e_coco.py' | |
det_ckpt = './ckpts/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth' | |
pose_config = './src/configs/dwpose-l_384x288.py' | |
pose_ckpt = './ckpts/dw-ll_ucoco_384.pth' | |
dwpose_model = DWposeDetector( | |
det_config=det_config, | |
det_ckpt=det_ckpt, | |
pose_config=pose_config, | |
pose_ckpt=pose_ckpt, | |
device=device | |
) | |
return dwpose_model.to(device) | |
def inference_pose(img_path, image_size=(1024, 1024)): | |
device = torch.device(f"cuda:{0}") | |
model = init_dwpose_detector(device=device) | |
pil_image = Image.open(img_path).convert("RGB").resize(image_size, Image.BICUBIC) | |
dwpose_image = model(pil_image, output_type='np', image_resolution=image_size[1]) | |
save_dwpose_image = Image.fromarray(dwpose_image) | |
return save_dwpose_image | |
inference_pose('imgs/test.png').save("pose.png") | |