from src.controlnet_aux import DWposeDetector from PIL import Image import torchvision.transforms as transforms import torch def init_dwpose_detector(device): # specify configs, ckpts and device, or it will be downloaded automatically and use cpu by default det_config = './src/configs/yolox_l_8xb8-300e_coco.py' det_ckpt = './ckpts/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth' pose_config = './src/configs/dwpose-l_384x288.py' pose_ckpt = './ckpts/dw-ll_ucoco_384.pth' dwpose_model = DWposeDetector( det_config=det_config, det_ckpt=det_ckpt, pose_config=pose_config, pose_ckpt=pose_ckpt, device=device ) return dwpose_model.to(device) def inference_pose(img_path, image_size=(1024, 1024)): device = torch.device(f"cuda:{0}") model = init_dwpose_detector(device=device) pil_image = Image.open(img_path).convert("RGB").resize(image_size, Image.BICUBIC) dwpose_image = model(pil_image, output_type='np', image_resolution=image_size[1]) save_dwpose_image = Image.fromarray(dwpose_image) return save_dwpose_image inference_pose('imgs/test.png').save("pose.png")