Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,21 +11,23 @@ import re
|
|
| 11 |
|
| 12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 13 |
|
|
|
|
| 14 |
TEXT_MODEL_NAME = "indobenchmark/indobert-large-p1"
|
| 15 |
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_NAME)
|
| 16 |
text_model = AutoModel.from_pretrained(TEXT_MODEL_NAME).to(device)
|
| 17 |
text_model.eval()
|
| 18 |
|
| 19 |
-
clip_model, _, clip_preprocess = open_clip.create_model_and_transforms(
|
| 20 |
-
"EVA01-g-14-plus",
|
| 21 |
-
pretrained="merged2b_s11b_b114k"
|
| 22 |
-
)
|
| 23 |
clip_model.to(device)
|
| 24 |
clip_model.eval()
|
| 25 |
|
| 26 |
with open("xgb_full.pkl", "rb") as f:
|
| 27 |
xgb_model = pickle.load(f)
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
def preprocess_text(text: str) -> str:
|
| 30 |
text = str(text).lower()
|
| 31 |
text = re.sub(r'http\S+|www\.\S+', '', text)
|
|
@@ -34,13 +36,43 @@ def preprocess_text(text: str) -> str:
|
|
| 34 |
text = re.sub(r'\s+', ' ', text).strip()
|
| 35 |
return " ".join(text.split())
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
app = FastAPI(
|
| 38 |
title="Multimodal Water Pollution Risk API",
|
| 39 |
description=(
|
| 40 |
"Input: text + image + geospatial + time\n"
|
| 41 |
-
"Model: IndoBERT + EVA-CLIP
|
| 42 |
),
|
| 43 |
-
version="1.0.
|
| 44 |
)
|
| 45 |
|
| 46 |
app.add_middleware(
|
|
@@ -63,57 +95,69 @@ async def predict(
|
|
| 63 |
text: str = Form(...),
|
| 64 |
longitude: float = Form(...),
|
| 65 |
latitude: float = Form(...),
|
| 66 |
-
location_cluster: int = Form(...),
|
| 67 |
hour: int = Form(...),
|
| 68 |
dayofweek: int = Form(...),
|
| 69 |
month: int = Form(...),
|
| 70 |
image: UploadFile = File(...),
|
| 71 |
):
|
| 72 |
-
# 1. preprocess text
|
| 73 |
-
cleaned_text = preprocess_text(text)
|
| 74 |
|
| 75 |
-
#
|
| 76 |
-
|
| 77 |
-
cleaned_text,
|
| 78 |
-
return_tensors="pt",
|
| 79 |
-
padding="max_length",
|
| 80 |
-
truncation=True,
|
| 81 |
-
max_length=128,
|
| 82 |
-
)
|
| 83 |
-
text_inputs = {k: v.to(device) for k, v in text_inputs.items()}
|
| 84 |
-
with torch.no_grad():
|
| 85 |
-
text_emb = text_model(**text_inputs).last_hidden_state[:, 0, :] # take the CLS token only
|
| 86 |
-
text_emb = text_emb.cpu().numpy()
|
| 87 |
|
| 88 |
-
#
|
| 89 |
img_bytes = await image.read()
|
| 90 |
-
|
| 91 |
-
img_tensor = clip_preprocess(pil_img).unsqueeze(0).to(device)
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
img_emb = img_emb.cpu().numpy()
|
| 96 |
|
| 97 |
-
# 4.
|
| 98 |
-
add_feats = np.array(
|
| 99 |
-
[[longitude, latitude, location_cluster, hour, dayofweek, month]],
|
| 100 |
-
dtype=np.float32,
|
| 101 |
-
)
|
| 102 |
|
| 103 |
-
# 5.
|
| 104 |
fused = np.concatenate([img_emb, text_emb, add_feats], axis=1)
|
| 105 |
|
| 106 |
-
# 6.
|
| 107 |
proba = xgb_model.predict_proba(fused)[0]
|
| 108 |
pred_idx = int(np.argmax(proba))
|
|
|
|
| 109 |
label = "KRITIS" if pred_idx == 1 else "WASPADA"
|
| 110 |
|
| 111 |
return {
|
| 112 |
"prediction": label,
|
|
|
|
| 113 |
"probabilities": {
|
| 114 |
"WASPADA": float(proba[0]),
|
| 115 |
-
"KRITIS": float(proba[1])
|
| 116 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
}
|
| 118 |
|
| 119 |
if __name__ == "__main__":
|
|
|
|
| 11 |
|
| 12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 13 |
|
| 14 |
+
# step 1: load the models
|
| 15 |
TEXT_MODEL_NAME = "indobenchmark/indobert-large-p1"
|
| 16 |
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_NAME)
|
| 17 |
text_model = AutoModel.from_pretrained(TEXT_MODEL_NAME).to(device)
|
| 18 |
text_model.eval()
|
| 19 |
|
| 20 |
+
clip_model, _, clip_preprocess = open_clip.create_model_and_transforms("EVA01-g-14-plus", pretrained="merged2b_s11b_b114k")
|
|
|
|
|
|
|
|
|
|
| 21 |
clip_model.to(device)
|
| 22 |
clip_model.eval()
|
| 23 |
|
| 24 |
with open("xgb_full.pkl", "rb") as f:
|
| 25 |
xgb_model = pickle.load(f)
|
| 26 |
|
| 27 |
+
with open("k-means.pkl", "rb") as f:
|
| 28 |
+
kmeans = pickle.load(f)
|
| 29 |
+
|
| 30 |
+
# step 2: preprocessing
|
| 31 |
def preprocess_text(text: str) -> str:
|
| 32 |
text = str(text).lower()
|
| 33 |
text = re.sub(r'http\S+|www\.\S+', '', text)
|
|
|
|
| 36 |
text = re.sub(r'\s+', ' ', text).strip()
|
| 37 |
return " ".join(text.split())
|
| 38 |
|
| 39 |
+
# step 3: feature encoding (text and image)
|
| 40 |
+
def encode_text(text: str):
|
| 41 |
+
# step 3.1 preprocess text
|
| 42 |
+
processed = preprocess_text(text)
|
| 43 |
+
# step 3.2 tokenize text
|
| 44 |
+
tokens = tokenizer(
|
| 45 |
+
processed,
|
| 46 |
+
return_tensors="pt",
|
| 47 |
+
padding="max_length",
|
| 48 |
+
truncation=True,
|
| 49 |
+
max_length=128,
|
| 50 |
+
)
|
| 51 |
+
tokens = {k: v.to(device) for k, v in tokens.items()}
|
| 52 |
+
|
| 53 |
+
with torch.no_grad():
|
| 54 |
+
# take the [CLS] token
|
| 55 |
+
out = text_model(**tokens).last_hidden_state[:, 0, :]
|
| 56 |
+
return out.cpu().numpy()
|
| 57 |
+
|
| 58 |
+
def encode_image(image_bytes):
|
| 59 |
+
# step 4.1 load the image
|
| 60 |
+
img = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
| 61 |
+
|
| 62 |
+
# step 4.2 encode the image into a tensor (embedding image)
|
| 63 |
+
tensor = clip_preprocess(img).unsqueeze(0).to(device)
|
| 64 |
+
|
| 65 |
+
with torch.no_grad():
|
| 66 |
+
emb = clip_model.encode_image(tensor)
|
| 67 |
+
return emb.cpu().numpy()
|
| 68 |
+
|
| 69 |
app = FastAPI(
|
| 70 |
title="Multimodal Water Pollution Risk API",
|
| 71 |
description=(
|
| 72 |
"Input: text + image + geospatial + time\n"
|
| 73 |
+
"Model: IndoBERT + EVA-CLIP + XGBoost\n"
|
| 74 |
),
|
| 75 |
+
version="1.0.3",
|
| 76 |
)
|
| 77 |
|
| 78 |
app.add_middleware(
|
|
|
|
| 95 |
text: str = Form(...),
|
| 96 |
longitude: float = Form(...),
|
| 97 |
latitude: float = Form(...),
|
|
|
|
| 98 |
hour: int = Form(...),
|
| 99 |
dayofweek: int = Form(...),
|
| 100 |
month: int = Form(...),
|
| 101 |
image: UploadFile = File(...),
|
| 102 |
):
|
|
|
|
|
|
|
| 103 |
|
| 104 |
+
# 1. Encode text
|
| 105 |
+
text_emb = encode_text(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
+
# 2. Encode image
|
| 108 |
img_bytes = await image.read()
|
| 109 |
+
img_emb = encode_image(img_bytes)
|
|
|
|
| 110 |
|
| 111 |
+
# 3. Generate the location cluster
|
| 112 |
+
location_cluster = int(kmeans.predict([[latitude, longitude]])[0])
|
|
|
|
| 113 |
|
| 114 |
+
# 4. Create feature vector
|
| 115 |
+
add_feats = np.array([[longitude, latitude, location_cluster, hour, dayofweek, month]], dtype=np.float32)
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
+
# 5. Early Fusion
|
| 118 |
fused = np.concatenate([img_emb, text_emb, add_feats], axis=1)
|
| 119 |
|
| 120 |
+
# 6. Predict
|
| 121 |
proba = xgb_model.predict_proba(fused)[0]
|
| 122 |
pred_idx = int(np.argmax(proba))
|
| 123 |
+
|
| 124 |
label = "KRITIS" if pred_idx == 1 else "WASPADA"
|
| 125 |
|
| 126 |
return {
|
| 127 |
"prediction": label,
|
| 128 |
+
"cluster_used": location_cluster,
|
| 129 |
"probabilities": {
|
| 130 |
"WASPADA": float(proba[0]),
|
| 131 |
+
"KRITIS": float(proba[1])
|
| 132 |
+
}
|
| 133 |
+
}
|
| 134 |
+
|
| 135 |
+
@app.post("/predict_proba")
|
| 136 |
+
async def predict_proba(
|
| 137 |
+
text: str = Form(...),
|
| 138 |
+
longitude: float = Form(...),
|
| 139 |
+
latitude: float = Form(...),
|
| 140 |
+
hour: int = Form(...),
|
| 141 |
+
dayofweek: int = Form(...),
|
| 142 |
+
month: int = Form(...),
|
| 143 |
+
image: UploadFile = File(...),
|
| 144 |
+
):
|
| 145 |
+
text_emb = encode_text(text)
|
| 146 |
+
img_bytes = await image.read()
|
| 147 |
+
img_emb = encode_image(img_bytes)
|
| 148 |
+
|
| 149 |
+
location_cluster = int(kmeans.predict([[latitude, longitude]])[0])
|
| 150 |
+
|
| 151 |
+
add_feats = np.array([[longitude, latitude, location_cluster, hour, dayofweek, month]], dtype=np.float32)
|
| 152 |
+
|
| 153 |
+
fused = np.concatenate([img_emb, text_emb, add_feats], axis=1)
|
| 154 |
+
|
| 155 |
+
proba = xgb_model.predict_proba(fused)[0]
|
| 156 |
+
|
| 157 |
+
return {
|
| 158 |
+
"WASPADA": float(proba[0]),
|
| 159 |
+
"KRITIS": float(proba[1]),
|
| 160 |
+
"cluster_used": location_cluster,
|
| 161 |
}
|
| 162 |
|
| 163 |
if __name__ == "__main__":
|