File size: 10,704 Bytes
61f3f56 f838b85 2d6c974 f838b85 2d6c974 f838b85 2d6c974 f838b85 2d6c974 f838b85 2d6c974 f838b85 2d6c974 f838b85 2d6c974 f838b85 2d6c974 f838b85 2d6c974 f838b85 2d6c974 f838b85 61f3f56 d1b9dab 932c4bc 61f3f56 d1b9dab 61f3f56 932c4bc 61f3f56 f6e0af0 61f3f56 2d6c974 61f3f56 2d6c974 61f3f56 2d6c974 61f3f56 2d6c974 61f3f56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import torch
from llava.constants import X_TOKEN_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from llava.mm_utils import get_model_name_from_path, KeywordsStoppingCriteria, tokenizer_X_token
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
# ==== memory-safe, de-hallucinating generation helpers ====
import re
import torch
# deterministic + anti-repeat defaults
GEN_KW = dict(
do_sample=False,
temperature=0.0,
top_p=1.0,
repetition_penalty=1.15, # breaks [[[ spam
no_repeat_ngram_size=3, # avoids short loops
use_cache=False, # reduces VRAM spikes on L4
)
def _big_gpu():
try:
return (torch.cuda.is_available()
and torch.cuda.get_device_properties(0).total_memory / 1024**3 >= 40) # >=40GB = L40S/A100
except Exception:
return False
MAX_NEW_TOKENS_SMALL = 128 # L4 (24 GB VRAM)
MAX_NEW_TOKENS_BIG = 256 # L40S+ (48 GB VRAM)
def build_framewise_prompt(T: int) -> str:
return (
f"You will output exactly {T} plain lines, one per frame.\n"
"Format strictly:\n"
"Frame 1: <<=10 words>\n"
"Frame 2: <<=10 words>\n"
"...\n"
"No brackets [], no JSON, no code blocks, no numbered list other than 'Frame i:'."
)
def keep_frame_lines(text: str, T: int) -> str:
\"\"\"Keep only `Frame i: ...` lines; ensure frames 1..T exist.\"\"\"
lines = []
for ln in text.splitlines():
m = re.match(r\"^Frame\\s+(\\d+)\\s*:\\s*(.+)$\", ln.strip())
if not m:
continue
i = int(m.group(1))
body = \" \".join(m.group(2).split()[:10]) # ≤10 words
if 1 <= i <= T:
lines.append((i, f\"Frame {i}: {body}\"))
have = {i for i,_ in lines}
for i in range(1, T+1):
if i not in have:
lines.append((i, f\"Frame {i}: (no description)\")) # never leaves gaps
return \"\\n\".join(t for _, t in sorted(lines))
# ==== end helpers ====
title_markdown = ("""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://github.com/PKU-YuanGroup/Video-LLaVA" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
<img src="https://z1.ax1x.com/2023/11/07/pil4sqH.png" alt="Video-LLaVA🚀" style="max-width: 120px; height: auto;">
</a>
<div>
<h1 >Video-LLaVA: Video-LLaVA: Learning United Visual Representation by Alignment Before Projection</h1>
<h5 style="margin: 0;">If you like our project, please give us a star ✨ on Github for the latest update.</h5>
</div>
</div>
<div align="center">
<div style="display:flex; gap: 0.25rem;" align="center">
<a href='https://github.com/PKU-YuanGroup/Video-LLaVA'><img src='https://img.shields.io/badge/Github-Code-blue'></a>
<a href="https://arxiv.org/pdf/2311.10122.pdf"><img src="https://img.shields.io/badge/Arxiv-2311.10122-red"></a>
<a href='https://github.com/PKU-YuanGroup/Video-LLaVA/stargazers'><img src='https://img.shields.io/github/stars/PKU-YuanGroup/Video-LLaVA.svg?style=social'></a>
</div>
</div>
""")
block_css = """
#buttons button {
min-width: min(120px,100%);
}
"""
tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
""")
learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
""")
class Chat:
def __init__(self, model_path, conv_mode, model_base=None, load_8bit=False, load_4bit=False, device='cuda'):
disable_torch_init()
model_name = get_model_name_from_path(model_path)
self.tokenizer, self.model, processor, context_len = load_pretrained_model(model_path, model_base, model_name,
load_8bit, load_4bit,
device=device)
self.image_processor = processor['image']
self.video_processor = processor['video']
self.conv_mode = conv_mode
self.device = self.model.device
print(self.model)
def get_prompt(self, qs, state):
state.append_message(state.roles[0], qs)
state.append_message(state.roles[1], None)
return state
@torch.inference_mode()
def generate(self, images_tensor: list, prompt: str, first_run: bool, state):
tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor
state = self.get_prompt(prompt, state)
prompt = state.get_prompt()
print('\n\n\n')
print(prompt)
if 'image' in images_tensor[1] and 'video' not in images_tensor[1]:
input_ids = tokenizer_X_token(prompt, tokenizer, X_TOKEN_INDEX['IMAGE'], return_tensors='pt').unsqueeze(0).to(self.device)
elif 'image' not in images_tensor[1] and 'video' in images_tensor[1]:
input_ids = tokenizer_X_token(prompt, tokenizer, X_TOKEN_INDEX['VIDEO'], return_tensors='pt').unsqueeze(0).to(self.device)
elif 'image' in images_tensor[1] and 'video' in images_tensor[1]:
# <video>\nxxxxxxx\n<image>
'''
tensor([[1, -200, 29871, 13, 3068, 366, 1074, 1716, 278, 1967, 322, 4863, 29973, 319, 1799, 9047, 13566, 29901]])
tensor([[1, -201, 29871, 13]])
'''
print("split: ", prompt.split('\n<image>'))
# print("\n", tokenizer_X_token('\n', tokenizer, X_TOKEN_INDEX['IMAGE'], return_tensors='pt'))
# print("?", tokenizer_X_token('?', tokenizer, X_TOKEN_INDEX['IMAGE'], return_tensors='pt'))
# print("image", tokenizer_X_token('image', tokenizer, X_TOKEN_INDEX['IMAGE'], return_tensors='pt'))
# print("image?", tokenizer_X_token('image?', tokenizer, X_TOKEN_INDEX['IMAGE'], return_tensors='pt'))
# print("USER: <image>\nWhat is unusual about this image?", tokenizer_X_token('USER: <image>\nWhat is unusual about this image?', tokenizer, X_TOKEN_INDEX['IMAGE'], return_tensors='pt'))
input_ids1 = tokenizer_X_token(prompt.split('\n<image>')[0], tokenizer, X_TOKEN_INDEX['VIDEO'], return_tensors='pt').unsqueeze(0).to(self.device)
print('input_ids1', input_ids1)
input_ids2 = tokenizer_X_token(prompt.split('\n<image>')[-1], tokenizer, X_TOKEN_INDEX['VIDEO'], return_tensors='pt').unsqueeze(0).to(self.device)
print('input_ids2', input_ids2)
input_ids3 = tokenizer_X_token('\n<image>', tokenizer, X_TOKEN_INDEX['IMAGE'], return_tensors='pt').unsqueeze(0).to(self.device)
print('input_ids3', input_ids3)
input_ids = torch.cat([input_ids1, input_ids3[:, 1:], input_ids2[:, 1:]], dim=-1)
print('input_ids', input_ids)
print(*[tokenizer.decode(i) for i in input_ids2[0]])
else:
input_ids = tokenizer_X_token(prompt, tokenizer, X_TOKEN_INDEX['IMAGE'], return_tensors='pt').unsqueeze(0).to(self.device)
temperature = 0.1
max_new_tokens = 1024
stop_str = conv_templates[self.conv_mode].copy().sep if conv_templates[self.conv_mode].copy().sep_style != SeparatorStyle.TWO else \
conv_templates[self.conv_mode].copy().sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
# streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# print(input_ids, images_tensor[0][0].shape)
with torch.inference_mode():
# infer how many frames actually went in (works for list-of-frames or tensors)
def _infer_T(imgs):
try:
if isinstance(imgs, (list, tuple)) and len(imgs) > 0:
first = imgs[0]
if isinstance(first, (list, tuple)):
return len(first)
if hasattr(first, "shape"):
shp = list(first.shape)
if len(shp) >= 4: # [T, C, H, W] or [1, T, C, H, W]
return int(shp[0])
except Exception:
pass
return 8 # safe default
_T = _infer_T(images_tensor)
# VRAM-aware cap: more frames → allow a few more tokens, but stay safe on L4
max_new_tokens = min(16 * max(1, _T), MAX_NEW_TOKENS_BIG if _big_gpu() else MAX_NEW_TOKENS_SMALL)
output_ids = model.generate(
input_ids,
images=images_tensor,
max_new_tokens=max_new_tokens,
**GEN_KW, # <- deterministic + lower VRAM
stopping_criteria=[stopping_criteria],
)
input_token_len = input_ids.shape[1]
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
if n_diff_input_output > 0:
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
outputs = outputs.strip()
# If user asked about frames, force a clean "Frame i: ..." list
try:
_T = _infer_T(images_tensor)
except Exception:
_T = 8
if "frame" in prompt.lower():
cleaned = keep_frame_lines(outputs, _T)
if cleaned.strip():
outputs = cleaned
print("response", outputs)
return outputs, state
|