|
import math |
|
import os |
|
import argparse |
|
import json |
|
|
|
import torch |
|
import transformers |
|
from tqdm import tqdm |
|
from llava.conversation import conv_templates, SeparatorStyle |
|
from llava.constants import DEFAULT_X_START_TOKEN, DEFAULT_X_TOKEN, DEFAULT_X_END_TOKEN, X_TOKEN_INDEX |
|
from llava.mm_utils import get_model_name_from_path, tokenizer_X_token, KeywordsStoppingCriteria |
|
from llava.model.builder import load_pretrained_model |
|
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM |
|
from llava.train.train import smart_tokenizer_and_embedding_resize |
|
|
|
|
|
def split_list(lst, n): |
|
"""Split a list into n (roughly) equal-sized chunks""" |
|
chunk_size = math.ceil(len(lst) / n) |
|
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] |
|
|
|
|
|
def get_chunk(lst, n, k): |
|
chunks = split_list(lst, n) |
|
return chunks[k] |
|
|
|
def parse_args(): |
|
""" |
|
Parse command-line arguments. |
|
""" |
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
parser.add_argument('--model_path', help='', required=True) |
|
parser.add_argument('--cache_dir', help='', required=True) |
|
parser.add_argument('--video_dir', help='Directory containing video files.', required=True) |
|
parser.add_argument('--gt_file_question', help='Path to the ground truth file containing question.', required=True) |
|
parser.add_argument('--gt_file_answers', help='Path to the ground truth file containing answers.', required=True) |
|
parser.add_argument('--output_dir', help='Directory to save the model results JSON.', required=True) |
|
parser.add_argument('--output_name', help='Name of the file for storing results JSON.', required=True) |
|
parser.add_argument("--num_chunks", type=int, default=1) |
|
parser.add_argument("--chunk_idx", type=int, default=0) |
|
parser.add_argument("--device", type=str, required=False, default='cuda:0') |
|
parser.add_argument('--model_base', help='', default=None, type=str, required=False) |
|
parser.add_argument("--model_max_length", type=int, required=False, default=2048) |
|
|
|
return parser.parse_args() |
|
|
|
def get_model_output(model, video_processor, tokenizer, video, qs, args): |
|
if model.config.mm_use_x_start_end: |
|
qs = DEFAULT_X_START_TOKEN['VIDEO'] + DEFAULT_X_TOKEN['VIDEO'] + DEFAULT_X_END_TOKEN['VIDEO'] + '\n' + qs |
|
else: |
|
qs = DEFAULT_X_TOKEN['VIDEO'] + '\n' + qs |
|
|
|
conv_mode = "llava_v1" |
|
args.conv_mode = conv_mode |
|
|
|
conv = conv_templates[args.conv_mode].copy() |
|
conv.append_message(conv.roles[0], qs) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
|
|
|
|
video_tensor = video_processor.preprocess(video, return_tensors='pt')['pixel_values'][0].half().to(args.device) |
|
|
|
input_ids = tokenizer_X_token(prompt, tokenizer, X_TOKEN_INDEX['VIDEO'], return_tensors='pt').unsqueeze(0).to(args.device) |
|
|
|
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 |
|
keywords = [stop_str] |
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) |
|
''' |
|
images (X_modalities) [ |
|
[img_feature, img_feature, video_feature, audio_feature], |
|
['image', 'image', 'video', 'audio'] |
|
] |
|
''' |
|
|
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
images=[[video_tensor], ['video']], |
|
do_sample=True, |
|
temperature=0.2, |
|
max_new_tokens=1024, |
|
use_cache=True, |
|
stopping_criteria=[stopping_criteria]) |
|
|
|
input_token_len = input_ids.shape[1] |
|
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() |
|
if n_diff_input_output > 0: |
|
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids') |
|
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0] |
|
outputs = outputs.strip() |
|
if outputs.endswith(stop_str): |
|
outputs = outputs[:-len(stop_str)] |
|
outputs = outputs.strip() |
|
print(outputs) |
|
return outputs |
|
|
|
|
|
def run_inference(args): |
|
""" |
|
Run inference on ActivityNet QA DataSet using the Video-ChatGPT model. |
|
|
|
Args: |
|
args: Command-line arguments. |
|
""" |
|
|
|
model_name = get_model_name_from_path(args.model_path) |
|
tokenizer, model, processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name) |
|
model = model.to(args.device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gt_questions = json.load(open(args.gt_file_question, "r")) |
|
gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx) |
|
gt_answers = json.load(open(args.gt_file_answers, "r")) |
|
|
|
|
|
answers_file = os.path.join(args.output_dir, f"{args.output_name}.json") |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
ans_file = open(answers_file, "w") |
|
|
|
|
|
if not os.path.exists(args.output_dir): |
|
os.makedirs(args.output_dir) |
|
|
|
output_list = [] |
|
|
|
|
|
video_formats = ['.mp4', '.avi', '.mov', '.mkv'] |
|
|
|
|
|
index = 0 |
|
for sample in tqdm(gt_questions): |
|
video_name = sample['video_name'] |
|
question = sample['question'] |
|
id = sample['question_id'] |
|
answer = gt_answers[index]['answer'] |
|
index += 1 |
|
|
|
sample_set = {'id': id, 'question': question, 'answer': answer} |
|
|
|
|
|
for fmt in tqdm(video_formats): |
|
temp_path = os.path.join(args.video_dir, f"v_{video_name}{fmt}") |
|
if os.path.exists(temp_path): |
|
video_path = temp_path |
|
|
|
|
|
output = get_model_output(model, processor['video'], tokenizer, video_path, question, args) |
|
sample_set['pred'] = output |
|
output_list.append(sample_set) |
|
|
|
|
|
ans_file.write(json.dumps(sample_set) + "\n") |
|
break |
|
|
|
ans_file.close() |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
run_inference(args) |
|
|