|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
import re |
|
|
|
from transformers import PretrainedConfig, Blip2PreTrainedModel, Blip2Config, Blip2QFormerModel |
|
|
|
|
|
class IdentityMap(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, x, *args, **kwargs): |
|
return x |
|
|
|
@property |
|
def config(self): |
|
return {"mm_projector_type": 'identity'} |
|
|
|
|
|
class SimpleResBlock(nn.Module): |
|
def __init__(self, channels): |
|
super().__init__() |
|
self.pre_norm = nn.LayerNorm(channels) |
|
|
|
self.proj = nn.Sequential( |
|
nn.Linear(channels, channels), |
|
nn.GELU(), |
|
nn.Linear(channels, channels) |
|
) |
|
def forward(self, x): |
|
x = self.pre_norm(x) |
|
return x + self.proj(x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Blip2Model(Blip2PreTrainedModel): |
|
def __init__(self, config: Blip2Config): |
|
super().__init__(config) |
|
|
|
self.query_tokens = nn.Parameter(torch.zeros(1, config.num_query_tokens, config.qformer_config.hidden_size)) |
|
self.qformer = Blip2QFormerModel(config.qformer_config) |
|
|
|
|
|
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size), nn.GELU(), nn.Linear(config.hidden_size, config.hidden_size)] |
|
self.proj = nn.Sequential(*modules) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
): |
|
r""" |
|
Returns: |
|
vision_outputs (`BaseModelOutputWithPooling` or tuple of `torch.FloatTensor`): |
|
The vision model outputs. If `return_dict=True`, the output is a [`BaseModelOutputWithPooling`] that |
|
contains the image features, the pooled image features and the hidden states if |
|
`output_hidden_states=True`. |
|
Examples: |
|
```python |
|
>>> import torch |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import Blip2Processor, Blip2Model |
|
|
|
>>> device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
>>> processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") |
|
>>> model = Blip2Model.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16) |
|
>>> model.to(device) # doctest: +IGNORE_RESULT |
|
|
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
>>> inputs = processor(images=image, return_tensors="pt").to(device, torch.float16) |
|
>>> qformer_outputs = model.get_qformer_features(**inputs) |
|
```""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image_embeds = pixel_values |
|
|
|
|
|
|
|
|
|
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device) |
|
|
|
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) |
|
query_outputs = self.qformer( |
|
query_embeds=query_tokens, |
|
encoder_hidden_states=image_embeds, |
|
encoder_attention_mask=image_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
).last_hidden_state |
|
|
|
query_outputs = self.proj(query_outputs) |
|
return query_outputs |
|
|
|
|
|
def qformer_config_template(config, projector_type): |
|
pattern = r"qformer(\d+)_(\d+)" |
|
|
|
match = re.search(pattern, projector_type) |
|
num_hidden_layers = int(match.group(1)) |
|
num_query_tokens = int(match.group(2)) |
|
|
|
qformer_config = type('Blip2Config', (PretrainedConfig,), { |
|
"initializer_factor": 1.0, |
|
"initializer_range": 0.02, |
|
"model_type": "blip-2", |
|
"num_query_tokens": num_query_tokens, |
|
"hidden_size": config.hidden_size, |
|
"mm_hidden_size": config.mm_hidden_size, |
|
"qformer_config": type('qformer_config', (PretrainedConfig,), { |
|
"_name_or_path": "", |
|
"add_cross_attention": False, |
|
"architectures": None, |
|
"attention_probs_dropout_prob": 0.0, |
|
"bad_words_ids": None, |
|
"begin_suppress_tokens": None, |
|
"bos_token_id": None, |
|
"chunk_size_feed_forward": 0, |
|
"classifier_dropout": None, |
|
"cross_attention_frequency": 1, |
|
"cross_attention_hidden_size": None, |
|
"decoder_start_token_id": None, |
|
"diversity_penalty": 0.0, |
|
"do_sample": False, |
|
"early_stopping": False, |
|
"encoder_hidden_size": config.mm_hidden_size, |
|
"encoder_no_repeat_ngram_size": 0, |
|
"eos_token_id": None, |
|
"exponential_decay_length_penalty": None, |
|
"finetuning_task": None, |
|
"forced_bos_token_id": None, |
|
"forced_eos_token_id": None, |
|
"hidden_act": "gelu", |
|
"hidden_dropout_prob": 0.0, |
|
"hidden_size": config.mm_hidden_size, |
|
"id2label": { |
|
"0": "LABEL_0", |
|
"1": "LABEL_1" |
|
}, |
|
"initializer_range": 0.02, |
|
"intermediate_size": config.mm_hidden_size * 4, |
|
"is_decoder": False, |
|
"is_encoder_decoder": False, |
|
"label2id": { |
|
"LABEL_0": 0, |
|
"LABEL_1": 1 |
|
}, |
|
"layer_norm_eps": 1e-12, |
|
"length_penalty": 1.0, |
|
"max_length": 20, |
|
"max_position_embeddings": 512, |
|
"min_length": 0, |
|
"model_type": "blip_2_qformer", |
|
"no_repeat_ngram_size": 0, |
|
"num_attention_heads": 32, |
|
"num_beam_groups": 1, |
|
"num_beams": 1, |
|
"num_hidden_layers": num_hidden_layers, |
|
"num_return_sequences": 1, |
|
"output_attentions": False, |
|
"output_hidden_states": False, |
|
"output_scores": False, |
|
"pad_token_id": 0, |
|
"position_embedding_type": "absolute", |
|
"prefix": None, |
|
"problem_type": None, |
|
"pruned_heads": {}, |
|
"remove_invalid_values": False, |
|
"repetition_penalty": 1.0, |
|
"return_dict": True, |
|
"return_dict_in_generate": False, |
|
"sep_token_id": None, |
|
"suppress_tokens": None, |
|
"task_specific_params": None, |
|
"temperature": 1.0, |
|
"tf_legacy_loss": False, |
|
"tie_encoder_decoder": False, |
|
"tie_word_embeddings": True, |
|
"tokenizer_class": None, |
|
"top_k": 50, |
|
"top_p": 1.0, |
|
"torch_dtype": None, |
|
"torchscript": False, |
|
"transformers_version": "4.27.0.dev0", |
|
"typical_p": 1.0, |
|
"use_bfloat16": False, |
|
"vocab_size": 30522 |
|
})() |
|
})() |
|
return qformer_config |
|
|
|
def build_vision_projector(config, delay_load=False, **kwargs): |
|
projector_type = getattr(config, 'mm_projector_type', 'linear') |
|
|
|
if projector_type == 'linear': |
|
return nn.Linear(config.mm_hidden_size, config.hidden_size) |
|
|
|
elif projector_type == 'identity': |
|
return IdentityMap() |
|
|
|
elif projector_type.startswith('qformer'): |
|
qformer_config = qformer_config_template(config, projector_type) |
|
return Blip2Model(qformer_config) |
|
else: |
|
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type) |
|
if mlp_gelu_match: |
|
mlp_depth = int(mlp_gelu_match.group(1)) |
|
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)] |
|
for _ in range(1, mlp_depth): |
|
modules.append(nn.GELU()) |
|
modules.append(nn.Linear(config.hidden_size, config.hidden_size)) |
|
return nn.Sequential(*modules) |
|
|
|
raise ValueError(f'Unknown projector type: {projector_type}') |