|
import argparse |
|
import torch |
|
|
|
from llava.constants import X_TOKEN_INDEX, DEFAULT_X_TOKEN, DEFAULT_X_START_TOKEN, DEFAULT_X_END_TOKEN |
|
from llava.conversation import conv_templates, SeparatorStyle |
|
from llava.model.builder import load_pretrained_model |
|
from llava.utils import disable_torch_init |
|
from llava.mm_utils import process_images, tokenizer_X_token, get_model_name_from_path, KeywordsStoppingCriteria |
|
|
|
from PIL import Image |
|
|
|
import requests |
|
from PIL import Image |
|
from io import BytesIO |
|
from transformers import TextStreamer |
|
|
|
|
|
def load_image(image_file): |
|
if image_file.startswith('http://') or image_file.startswith('https://'): |
|
response = requests.get(image_file) |
|
image = Image.open(BytesIO(response.content)).convert('RGB') |
|
else: |
|
image = Image.open(image_file).convert('RGB') |
|
return image |
|
|
|
|
|
def main(args): |
|
|
|
disable_torch_init() |
|
assert not (args.image_file and args.video_file) |
|
model_name = get_model_name_from_path(args.model_path) |
|
tokenizer, model, processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, |
|
args.load_8bit, args.load_4bit, device=args.device) |
|
|
|
image_processor = processor['image'] |
|
video_processor = processor['video'] |
|
if 'llama-2' in model_name.lower(): |
|
conv_mode = "llava_llama_2" |
|
elif "v1" in model_name.lower(): |
|
conv_mode = "llava_v1" |
|
elif "mpt" in model_name.lower(): |
|
conv_mode = "mpt" |
|
else: |
|
conv_mode = "llava_v0" |
|
|
|
if args.conv_mode is not None and conv_mode != args.conv_mode: |
|
print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode)) |
|
else: |
|
args.conv_mode = conv_mode |
|
|
|
conv = conv_templates[args.conv_mode].copy() |
|
if "mpt" in model_name.lower(): |
|
roles = ('user', 'assistant') |
|
else: |
|
roles = conv.roles |
|
image = args.image_file |
|
video = args.video_file |
|
|
|
if args.image_file: |
|
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'] |
|
if type(image_tensor) is list: |
|
tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor] |
|
else: |
|
tensor = image_tensor.to(model.device, dtype=torch.float16) |
|
key = ['image'] |
|
|
|
elif args.video_file: |
|
video_tensor = video_processor(video, return_tensors='pt')['pixel_values'] |
|
if type(video_tensor) is list: |
|
tensor = [video.to(model.device, dtype=torch.float16) for video in video_tensor] |
|
else: |
|
tensor = video_tensor.to(model.device, dtype=torch.float16) |
|
key = ['video'] |
|
|
|
while True: |
|
try: |
|
inp = input(f"{roles[0]}: ") |
|
except EOFError: |
|
inp = "" |
|
if not inp: |
|
print("exit...") |
|
break |
|
|
|
print(f"{roles[1]}: ", end="") |
|
|
|
if image is not None: |
|
|
|
inp = DEFAULT_X_TOKEN['IMAGE'] + '\n' + inp |
|
conv.append_message(conv.roles[0], inp) |
|
image = None |
|
elif video is not None: |
|
|
|
inp = DEFAULT_X_TOKEN['VIDEO'] + '\n' + inp |
|
conv.append_message(conv.roles[0], inp) |
|
video = None |
|
else: |
|
|
|
conv.append_message(conv.roles[0], inp) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
if args.image_file: |
|
input_ids = tokenizer_X_token(prompt, tokenizer, X_TOKEN_INDEX['IMAGE'], return_tensors='pt').unsqueeze(0).cuda() |
|
elif args.video_file: |
|
input_ids = tokenizer_X_token(prompt, tokenizer, X_TOKEN_INDEX['VIDEO'], return_tensors='pt').unsqueeze(0).cuda() |
|
|
|
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 |
|
keywords = [stop_str] |
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) |
|
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
|
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
images=[tensor, key], |
|
do_sample=True, |
|
temperature=args.temperature, |
|
max_new_tokens=args.max_new_tokens, |
|
streamer=streamer, |
|
use_cache=True, |
|
stopping_criteria=[stopping_criteria]) |
|
|
|
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() |
|
conv.messages[-1][-1] = outputs |
|
|
|
if args.debug: |
|
print("\n", {"prompt": prompt, "outputs": outputs}, "\n") |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model-path", type=str, default="facebook/opt-350m") |
|
parser.add_argument("--model-base", type=str, default=None) |
|
parser.add_argument("--image-file", type=str, default=None) |
|
parser.add_argument("--video-file", type=str) |
|
parser.add_argument("--device", type=str, default="cuda") |
|
parser.add_argument("--conv-mode", type=str, default=None) |
|
parser.add_argument("--temperature", type=float, default=0.2) |
|
parser.add_argument("--max-new-tokens", type=int, default=512) |
|
parser.add_argument("--load-8bit", action="store_true") |
|
parser.add_argument("--load-4bit", action="store_true") |
|
parser.add_argument("--debug", action="store_true") |
|
parser.add_argument("--image-aspect-ratio", type=str, default='pad') |
|
args = parser.parse_args() |
|
main(args) |
|
|