Update app.py
Browse files
app.py
CHANGED
@@ -6,48 +6,81 @@ import io
|
|
6 |
import fitz # PyMuPDF
|
7 |
import tempfile
|
8 |
import os
|
|
|
9 |
|
10 |
-
# ---
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
images = []
|
|
|
|
|
14 |
try:
|
15 |
-
|
16 |
-
|
17 |
-
tmp_file.write(pdf_file)
|
18 |
-
tmp_file_path = tmp_file.name
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
|
23 |
-
|
24 |
-
for page_num in range(len(pdf_document)):
|
25 |
page = pdf_document.load_page(page_num)
|
26 |
-
|
|
|
27 |
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
28 |
images.append(img)
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
31 |
pdf_document.close()
|
32 |
-
os.unlink(tmp_file_path)
|
33 |
|
|
|
|
|
34 |
except Exception as e:
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
37 |
|
38 |
def image_to_base64(image):
|
39 |
"""Convert PIL Image to base64 string"""
|
|
|
|
|
|
|
|
|
40 |
with io.BytesIO() as buffer:
|
|
|
41 |
image.save(buffer, format="PNG")
|
42 |
return base64.b64encode(buffer.getvalue()).decode("utf-8")
|
43 |
|
44 |
def generate_summary(extracted_texts, api_key):
|
45 |
"""Generate a comprehensive summary of all extracted texts"""
|
|
|
|
|
|
|
46 |
try:
|
47 |
-
client =
|
48 |
-
base_url="https://openrouter.ai/api/v1",
|
49 |
-
api_key=api_key
|
50 |
-
)
|
51 |
|
52 |
summary_prompt = f"""
|
53 |
You are an expert document analyst. Below are the extracted contents from multiple pages of a document.
|
@@ -58,226 +91,357 @@ def generate_summary(extracted_texts, api_key):
|
|
58 |
4. Presents the information in a clear, structured format
|
59 |
|
60 |
Extracted contents from pages:
|
|
|
61 |
{extracted_texts}
|
|
|
62 |
|
63 |
Comprehensive Summary:
|
64 |
"""
|
65 |
-
|
66 |
response = client.chat.completions.create(
|
67 |
-
model="opengvlab/internvl3-14b:free",
|
68 |
messages=[
|
69 |
{"role": "system", "content": "You are Dalton, an expert in analyzing and summarizing document contents."},
|
70 |
{"role": "user", "content": summary_prompt}
|
71 |
],
|
72 |
-
max_tokens=2048
|
73 |
)
|
74 |
|
75 |
return response.choices[0].message.content
|
76 |
-
|
77 |
except Exception as e:
|
78 |
-
|
|
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
106 |
try:
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
-
|
|
|
|
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
{"role": "system", "content": "You are Dalton, an expert in understanding images that can analyze images and provide detailed descriptions."},
|
118 |
-
{"role": "user", "content": [
|
119 |
-
{"type": "text", "text": user_prompt},
|
120 |
-
{"type": "image_url", "image_url": {
|
121 |
-
"url": f"data:image/png;base64,{image_base64}"
|
122 |
-
}}
|
123 |
-
]}
|
124 |
-
],
|
125 |
-
max_tokens=1024
|
126 |
-
)
|
127 |
-
|
128 |
-
result = response.choices[0].message.content
|
129 |
-
extracted_texts.append(f"### Page {idx}\n{result}\n")
|
130 |
-
all_results.append(f"## π Page {idx} Results\n{result}\n---\n")
|
131 |
|
132 |
except Exception as e:
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
:
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
body {
|
176 |
-
|
177 |
-
color: var(--text-color) !important;
|
178 |
}
|
179 |
-
|
180 |
-
|
|
|
181 |
padding: 20px;
|
182 |
-
|
183 |
-
background: var(--color-background-secondary);
|
184 |
-
border: 1px solid var(--block-border-color);
|
185 |
-
max-height: 600px;
|
186 |
-
overflow-y: auto;
|
187 |
-
color: var(--text-color) !important;
|
188 |
}
|
189 |
-
|
190 |
-
|
191 |
-
.markdown-output h2,
|
192 |
-
.markdown-output h3 {
|
193 |
-
color: var(--primary) !important;
|
194 |
-
border-bottom: 1px solid var(--primary-300);
|
195 |
}
|
196 |
-
|
197 |
-
|
198 |
-
color:
|
|
|
199 |
}
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
204 |
}
|
205 |
-
|
206 |
-
|
207 |
-
background-color: var(--color-background-tertiary) !important;
|
208 |
-
border: 1px solid var(--block-border-color);
|
209 |
}
|
210 |
-
|
211 |
-
|
212 |
-
.markdown-output ol {
|
213 |
-
color: var(--text-color);
|
214 |
}
|
215 |
-
|
216 |
-
|
217 |
-
background: var(--primary) !important;
|
218 |
-
color: black !important;
|
219 |
-
font-weight: bold !important;
|
220 |
}
|
221 |
-
|
222 |
-
|
223 |
-
|
|
|
|
|
224 |
}
|
225 |
"""
|
226 |
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
# --- GRADIO INTERFACE ---
|
243 |
-
with gr.Blocks(
|
244 |
-
title="DocSum - Document Summarizer",
|
245 |
-
theme=dark_green_theme,
|
246 |
-
css=custom_css
|
247 |
-
) as demo:
|
248 |
-
gr.Markdown("# π§Ύ DocSum")
|
249 |
-
gr.Markdown("Document Summarizer Powered by VLM β’ Developed by [Koshur AI](https://koshurai.com)")
|
250 |
|
251 |
with gr.Row():
|
252 |
-
|
253 |
-
label="π OpenRouter API Key",
|
254 |
-
type="password",
|
255 |
-
placeholder="Enter your OpenRouter API key"
|
256 |
-
)
|
257 |
-
user_prompt = gr.Textbox(
|
258 |
label="π Enter Your Prompt",
|
259 |
value="Extract all content structurally",
|
260 |
-
|
|
|
|
|
|
|
261 |
)
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
)
|
267 |
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
)
|
275 |
|
276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
fn=analyze_document,
|
278 |
-
inputs=[
|
279 |
-
outputs=
|
|
|
280 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
|
|
|
282 |
if __name__ == "__main__":
|
283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import fitz # PyMuPDF
|
7 |
import tempfile
|
8 |
import os
|
9 |
+
import shutil # Added for cleaning up temp dirs
|
10 |
|
11 |
+
# --- OPENAI CLIENT SETUP ---
|
12 |
+
# Use environment variable or textbox for API key for better security in deployed apps
|
13 |
+
# client = OpenAI(
|
14 |
+
# base_url="https://openrouter.ai/api/v1",
|
15 |
+
# api_key=os.getenv("OPENROUTER_API_KEY") # Recommended approach
|
16 |
+
# )
|
17 |
+
# For this example, we'll get the key from the input field
|
18 |
+
|
19 |
+
def get_openai_client(api_key):
|
20 |
+
"""Initializes and returns the OpenAI client."""
|
21 |
+
if not api_key:
|
22 |
+
# Handle case where API key is missing (though Gradio will likely prevent this)
|
23 |
+
raise ValueError("API key is required.")
|
24 |
+
|
25 |
+
return OpenAI(
|
26 |
+
base_url="https://openrouter.ai/api/v1",
|
27 |
+
api_key=api_key
|
28 |
+
)
|
29 |
+
|
30 |
+
def convert_pdf_to_images(pdf_path):
|
31 |
+
"""Convert PDF file path to list of PIL Images and return the images,
|
32 |
+
and a list of temporary image file paths."""
|
33 |
images = []
|
34 |
+
temp_image_paths = []
|
35 |
+
temp_dir = None
|
36 |
try:
|
37 |
+
pdf_document = fitz.open(pdf_path)
|
38 |
+
num_pages = len(pdf_document)
|
|
|
|
|
39 |
|
40 |
+
# Create a temporary directory for images
|
41 |
+
temp_dir = tempfile.mkdtemp()
|
42 |
|
43 |
+
for page_num in range(num_pages):
|
|
|
44 |
page = pdf_document.load_page(page_num)
|
45 |
+
# Render at a higher DPI for better clarity for VLM
|
46 |
+
pix = page.get_pixmap(dpi=300)
|
47 |
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
48 |
images.append(img)
|
49 |
+
|
50 |
+
# Save image to temp directory for Gradio preview/processing later
|
51 |
+
temp_img_path = os.path.join(temp_dir, f"page_{page_num+1}.png")
|
52 |
+
img.save(temp_img_path, format="PNG")
|
53 |
+
temp_image_paths.append(temp_img_path)
|
54 |
+
|
55 |
pdf_document.close()
|
|
|
56 |
|
57 |
+
return images, temp_image_paths, num_pages, temp_dir
|
58 |
+
|
59 |
except Exception as e:
|
60 |
+
print(f"Error converting PDF: {e}")
|
61 |
+
# Clean up temp dir if it was created
|
62 |
+
if temp_dir and os.path.exists(temp_dir):
|
63 |
+
shutil.rmtree(temp_dir)
|
64 |
+
return [], [], 0, None
|
65 |
|
66 |
def image_to_base64(image):
|
67 |
"""Convert PIL Image to base64 string"""
|
68 |
+
# Ensure image is RGB (some images might be RGBA, etc.)
|
69 |
+
if image.mode != 'RGB':
|
70 |
+
image = image.convert('RGB')
|
71 |
+
|
72 |
with io.BytesIO() as buffer:
|
73 |
+
# Using PNG as it's lossless and well-supported
|
74 |
image.save(buffer, format="PNG")
|
75 |
return base64.b64encode(buffer.getvalue()).decode("utf-8")
|
76 |
|
77 |
def generate_summary(extracted_texts, api_key):
|
78 |
"""Generate a comprehensive summary of all extracted texts"""
|
79 |
+
if not extracted_texts:
|
80 |
+
return "No content extracted to summarize."
|
81 |
+
|
82 |
try:
|
83 |
+
client = get_openai_client(api_key)
|
|
|
|
|
|
|
84 |
|
85 |
summary_prompt = f"""
|
86 |
You are an expert document analyst. Below are the extracted contents from multiple pages of a document.
|
|
|
91 |
4. Presents the information in a clear, structured format
|
92 |
|
93 |
Extracted contents from pages:
|
94 |
+
---
|
95 |
{extracted_texts}
|
96 |
+
---
|
97 |
|
98 |
Comprehensive Summary:
|
99 |
"""
|
100 |
+
|
101 |
response = client.chat.completions.create(
|
102 |
+
model="opengvlab/internvl3-14b:free", # Ensure this model is available via OpenRouter
|
103 |
messages=[
|
104 |
{"role": "system", "content": "You are Dalton, an expert in analyzing and summarizing document contents."},
|
105 |
{"role": "user", "content": summary_prompt}
|
106 |
],
|
107 |
+
max_tokens=2048 # Adjust as needed
|
108 |
)
|
109 |
|
110 |
return response.choices[0].message.content
|
111 |
+
|
112 |
except Exception as e:
|
113 |
+
print(f"Error generating summary: {e}")
|
114 |
+
return f"Error generating summary: {e}"
|
115 |
|
116 |
+
# --- Gradio App Functions ---
|
117 |
+
|
118 |
+
def process_upload(file_obj):
|
119 |
+
"""Handle file upload - converts PDF, prepares image previews, and updates state."""
|
120 |
+
if file_obj is None:
|
121 |
+
# Clear outputs
|
122 |
+
return None, None, [], [], "Please upload a document.", None, None, None
|
123 |
+
|
124 |
+
file_path = file_obj.name # Gradio's File component provides a path
|
125 |
+
file_type = file_obj.orig_name.split('.')[-1].lower() # Get extension from original name
|
126 |
+
|
127 |
+
if file_type == "pdf":
|
128 |
+
images, temp_paths, num_pages, temp_dir = convert_pdf_to_images(file_path)
|
129 |
+
if not images:
|
130 |
+
return None, None, [], [], "Failed to convert PDF to images.", None, None, None
|
131 |
+
|
132 |
+
page_options = [f"Page {i}" for i in range(1, num_pages + 1)]
|
133 |
+
# By default select all pages
|
134 |
+
default_selection = page_options
|
135 |
+
|
136 |
+
# Store original PIL images and temp dir in state
|
137 |
+
# State will hold (list of PIL images, list of temp file paths, temp directory path)
|
138 |
+
images_state = (images, temp_paths, temp_dir)
|
139 |
+
|
140 |
+
status = f"PDF uploaded. {num_pages} pages detected. Select pages to analyze."
|
141 |
+
# Return selected pages (as names), image previews (as paths), page options, status
|
142 |
+
return images_state, default_selection, temp_paths, page_options, status, None, None, None # Also return None for results and summary
|
143 |
+
|
144 |
+
elif file_type in ["jpg", "jpeg", "png"]:
|
145 |
try:
|
146 |
+
img = Image.open(file_path)
|
147 |
+
# Ensure it's RGB
|
148 |
+
if img.mode != 'RGB':
|
149 |
+
img = img.convert('RGB')
|
150 |
+
|
151 |
+
# Save to a temp file for Gradio preview
|
152 |
+
temp_dir = tempfile.mkdtemp()
|
153 |
+
temp_img_path = os.path.join(temp_dir, "uploaded_image.png")
|
154 |
+
img.save(temp_img_path, format="PNG")
|
155 |
|
156 |
+
# Store original PIL image and temp dir in state
|
157 |
+
# State will hold (list of PIL images, list of temp file paths, temp directory path)
|
158 |
+
images_state = ([img], [temp_img_path], temp_dir)
|
159 |
|
160 |
+
status = "Image uploaded."
|
161 |
+
# Return empty selection/options for image, but provide the single image path for preview
|
162 |
+
return images_state, [], [temp_img_path], [], status, None, None, None # Also return None for results and summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
except Exception as e:
|
165 |
+
print(f"Error loading image: {e}")
|
166 |
+
# Clean up temp dir if created
|
167 |
+
if temp_dir and os.path.exists(temp_dir):
|
168 |
+
shutil.rmtree(temp_dir)
|
169 |
+
return None, None, [], [], f"Failed to load image: {e}", None, None, None
|
170 |
+
else:
|
171 |
+
return None, None, [], [], "Unsupported file type. Please upload JPG, PNG, or PDF.", None, None, None
|
172 |
+
|
173 |
+
def analyze_document(api_key, user_prompt, images_state, selected_page_names):
|
174 |
+
"""Analyze selected images using the VLM and generate summary."""
|
175 |
+
if not api_key:
|
176 |
+
return None, None, "Please enter your Open Router API Key."
|
177 |
|
178 |
+
if not images_state or not images_state[0]: # Check if images_state exists and contains images
|
179 |
+
return None, None, "No document uploaded or converted."
|
180 |
+
|
181 |
+
all_pil_images = images_state[0]
|
182 |
+
temp_dir = images_state[2] # Get the temp directory path
|
183 |
+
|
184 |
+
images_to_analyze = []
|
185 |
+
extracted_texts = []
|
186 |
+
all_results = []
|
187 |
|
188 |
+
# Determine which images to process based on selection (or process all if image file)
|
189 |
+
if selected_page_names: # This indicates PDF and pages were selected
|
190 |
+
selected_indices = [int(name.split(" ")[1]) - 1 for name in selected_page_names]
|
191 |
+
images_to_analyze = [(idx + 1, all_pil_images[idx]) for idx in selected_indices if idx < len(all_pil_images)]
|
192 |
+
elif all_pil_images: # This indicates a single image file
|
193 |
+
images_to_analyze = [(1, all_pil_images[0])]
|
194 |
+
|
195 |
+
if not images_to_analyze:
|
196 |
+
# Clean up temp dir as analysis failed or no pages selected
|
197 |
+
if temp_dir and os.path.exists(temp_dir):
|
198 |
+
shutil.rmtree(temp_dir)
|
199 |
+
return None, None, "No pages selected for analysis."
|
200 |
+
|
201 |
+
|
202 |
+
try:
|
203 |
+
client = get_openai_client(api_key)
|
204 |
+
|
205 |
+
for page_num, image in images_to_analyze:
|
206 |
+
status_message = f"Analyzing page {page_num}..."
|
207 |
+
yield None, None, status_message # Update status message during processing
|
208 |
+
|
209 |
+
try:
|
210 |
+
image_base64_data = image_to_base64(image)
|
211 |
+
|
212 |
+
response = client.chat.completions.create(
|
213 |
+
model="opengvlab/internvl3-14b:free", # Ensure this model is available via OpenRouter
|
214 |
+
messages=[
|
215 |
+
{"role": "system", "content": "You are Dalton, an expert in understanding images that can analyze images and provide detailed descriptions."},
|
216 |
+
{"role": "user", "content": [
|
217 |
+
{"type": "text", "text": user_prompt},
|
218 |
+
{"type": "image_url", "image_url": {
|
219 |
+
"url": f"data:image/png;base64,{image_base64_data}"
|
220 |
+
}}
|
221 |
+
]}
|
222 |
+
],
|
223 |
+
max_tokens=1024 # Adjust as needed
|
224 |
+
)
|
225 |
+
|
226 |
+
result = response.choices[0].message.content
|
227 |
+
extracted_texts.append(f"=== Page {page_num} ===\n{result}\n")
|
228 |
+
|
229 |
+
if len(images_to_analyze) > 1:
|
230 |
+
all_results.append(f"### π Page {page_num} Result:")
|
231 |
+
else:
|
232 |
+
all_results.append("### β
Analysis Result:")
|
233 |
+
all_results.append(result)
|
234 |
+
all_results.append("---")
|
235 |
+
|
236 |
+
except Exception as e:
|
237 |
+
error_msg = f"An error occurred analyzing page {page_num}: {e}"
|
238 |
+
print(error_msg)
|
239 |
+
all_results.append(f"### β Error on Page {page_num}:")
|
240 |
+
all_results.append(error_msg)
|
241 |
+
all_results.append("---")
|
242 |
+
# Don't stop, try other pages
|
243 |
+
|
244 |
+
# Combine individual results
|
245 |
+
individual_results_markdown = "\n".join(all_results) if all_results else "No results generated."
|
246 |
+
|
247 |
+
# Generate and display comprehensive summary if multiple pages were processed
|
248 |
+
summary_text = ""
|
249 |
+
if len(images_to_analyze) > 1 and extracted_texts:
|
250 |
+
yield individual_results_markdown, None, "Generating comprehensive summary..."
|
251 |
+
full_extracted_text = "\n".join(extracted_texts)
|
252 |
+
summary_text = generate_summary(full_extracted_text, api_key)
|
253 |
+
status_message = "Analysis complete. Summary generated."
|
254 |
+
elif extracted_texts: # Single page case
|
255 |
+
summary_text = "Summary not generated for single page analysis. See analysis result above."
|
256 |
+
status_message = "Analysis complete."
|
257 |
+
else:
|
258 |
+
summary_text = "No content extracted for summary."
|
259 |
+
status_message = "Analysis complete, but no text extracted."
|
260 |
+
|
261 |
+
# Clean up the temporary directory used for images
|
262 |
+
if temp_dir and os.path.exists(temp_dir):
|
263 |
+
shutil.rmtree(temp_dir)
|
264 |
+
|
265 |
+
return individual_results_markdown, summary_text, status_message
|
266 |
+
|
267 |
+
except Exception as e:
|
268 |
+
# Clean up the temporary directory in case of error
|
269 |
+
if temp_dir and os.path.exists(temp_dir):
|
270 |
+
shutil.rmtree(temp_dir)
|
271 |
+
|
272 |
+
error_msg = f"An unhandled error occurred during analysis: {e}"
|
273 |
+
print(error_msg)
|
274 |
+
return None, None, error_msg
|
275 |
|
276 |
+
|
277 |
+
# Function to clean up temp dir when session ends or is closed
|
278 |
+
def clean_temp_dir(temp_dir):
|
279 |
+
if temp_dir and os.path.exists(temp_dir):
|
280 |
+
print(f"Cleaning up temporary directory: {temp_dir}")
|
281 |
+
shutil.rmtree(temp_dir)
|
282 |
+
|
283 |
+
|
284 |
+
# --- Gradio Interface Layout ---
|
285 |
+
|
286 |
+
# Custom CSS (simplified from Streamlit CSS)
|
287 |
+
css = """
|
288 |
body {
|
289 |
+
font-family: 'Inter', sans-serif;
|
|
|
290 |
}
|
291 |
+
.gradio-container {
|
292 |
+
max-width: 800px !important;
|
293 |
+
margin: auto;
|
294 |
padding: 20px;
|
295 |
+
background-color: #f9fafb; /* Light gray background */
|
|
|
|
|
|
|
|
|
|
|
296 |
}
|
297 |
+
h1, h2, h3, h4 {
|
298 |
+
color: #111827; /* Darker text for headers */
|
|
|
|
|
|
|
|
|
299 |
}
|
300 |
+
.subtitle {
|
301 |
+
font-size: 1rem;
|
302 |
+
color: #6b7280; /* Gray text for subtitle */
|
303 |
+
margin-bottom: 2rem;
|
304 |
}
|
305 |
+
.summary-box {
|
306 |
+
background-color: #e0f2fe; /* Light blue background */
|
307 |
+
padding: 1.5rem;
|
308 |
+
border-radius: 8px;
|
309 |
+
margin-top: 1rem; /* Reduced margin-top */
|
310 |
+
border: 1px solid #bfdbfe; /* Light blue border */
|
311 |
}
|
312 |
+
.summary-box p {
|
313 |
+
margin: 0; /* Remove paragraph margin */
|
|
|
|
|
314 |
}
|
315 |
+
.file-upload-label .wrap {
|
316 |
+
text-align: center !important;
|
|
|
|
|
317 |
}
|
318 |
+
.gr-button {
|
319 |
+
margin-top: 1rem !important;
|
|
|
|
|
|
|
320 |
}
|
321 |
+
/* Style for the status message */
|
322 |
+
#status_message_id {
|
323 |
+
margin-top: 1rem;
|
324 |
+
font-weight: bold;
|
325 |
+
color: #1f2937;
|
326 |
}
|
327 |
"""
|
328 |
|
329 |
+
with gr.Blocks(css=css, title="DocSum - Document Summarizer", theme=gr.themes.Soft()) as demo:
|
330 |
+
|
331 |
+
# State to hold images and temp paths after PDF conversion
|
332 |
+
# Structure: (list of PIL images, list of temp file paths for preview/analysis, temp directory path)
|
333 |
+
images_state = gr.State(None)
|
334 |
+
# State to hold the temp dir path for cleanup
|
335 |
+
current_temp_dir = gr.State(None)
|
336 |
+
|
337 |
+
gr.HTML("""
|
338 |
+
<div style="text-align: center;">
|
339 |
+
<img src='https://raw.githubusercontent.com/KoshurAI/DocSum/main/blob.png' width='100'>
|
340 |
+
<h1>DocSum</h1>
|
341 |
+
<p class="subtitle">Document Summarizer Powered by VLM β’ Developed by <a href="https://koshurai.com" target="_blank">Koshur AI</a></p>
|
342 |
+
</div>
|
343 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
|
345 |
with gr.Row():
|
346 |
+
user_prompt_input = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
347 |
label="π Enter Your Prompt",
|
348 |
value="Extract all content structurally",
|
349 |
+
lines=2,
|
350 |
+
interactive=True,
|
351 |
+
container=True,
|
352 |
+
scale=2
|
353 |
)
|
354 |
+
api_key_input = gr.Textbox(
|
355 |
+
label="π OpenRouter API Key",
|
356 |
+
type="password",
|
357 |
+
interactive=True,
|
358 |
+
container=True,
|
359 |
+
scale=1,
|
360 |
+
info="Your key is not stored."
|
361 |
+
# Consider adding value=os.getenv("OPENROUTER_API_KEY", "") for easier local testing
|
362 |
+
)
|
363 |
+
|
364 |
+
file_upload = gr.File(
|
365 |
+
label="Upload a document (JPG/PNG/PDF)",
|
366 |
+
file_types=[".jpg", ".jpeg", ".png", ".pdf"],
|
367 |
+
interactive=True
|
368 |
+
)
|
369 |
+
|
370 |
+
# Components for PDF page selection and preview (initially hidden)
|
371 |
+
page_selector = gr.Checkboxgroup(
|
372 |
+
label="Select PDF Pages to Analyze",
|
373 |
+
choices=[],
|
374 |
+
value=[],
|
375 |
+
visible=False,
|
376 |
+
interactive=True
|
377 |
+
)
|
378 |
+
preview_gallery = gr.Gallery(
|
379 |
+
label="Selected Page Previews",
|
380 |
+
visible=False,
|
381 |
+
container=True,
|
382 |
+
preview=True, # Show previews
|
383 |
+
columns=3,
|
384 |
+
rows=1,
|
385 |
+
object_fit="contain",
|
386 |
+
height="auto"
|
387 |
)
|
388 |
|
389 |
+
status_message = gr.Markdown(elem_id="status_message_id") # Use a Markdown element for status updates
|
390 |
+
|
391 |
+
analyze_button = gr.Button("π Analyze Document")
|
392 |
+
|
393 |
+
# Outputs
|
394 |
+
individual_results_output = gr.Markdown(label="Page-by-Page Analysis Results")
|
395 |
+
summary_output = gr.Markdown(label="Comprehensive Document Summary", elem_classes="summary-box") # Apply CSS class
|
396 |
+
|
397 |
+
# --- Event Handling ---
|
398 |
+
|
399 |
+
# When a file is uploaded, process it (convert PDF, show previews, update state)
|
400 |
+
file_upload.change(
|
401 |
+
fn=process_upload,
|
402 |
+
inputs=[file_upload],
|
403 |
+
outputs=[images_state, page_selector, preview_gallery, page_selector.choices, status_message, individual_results_output, summary_output, current_temp_dir],
|
404 |
+
show_progress=True # Show Gradio's built-in progress indicator
|
405 |
)
|
406 |
|
407 |
+
# When page selection changes (for PDF), update the preview gallery
|
408 |
+
# Note: This requires saving the temp image paths in the state from process_upload
|
409 |
+
page_selector.change(
|
410 |
+
fn=lambda selected_pages, images_state: [images_state[1][int(name.split(" ")[1]) - 1] for name in selected_pages] if images_state and images_state[1] else [],
|
411 |
+
inputs=[page_selector, images_state],
|
412 |
+
outputs=[preview_gallery],
|
413 |
+
show_progress=False # No need for progress bar here
|
414 |
+
).then( # Chain another event to update status message
|
415 |
+
fn=lambda num_selected: f"{num_selected} pages selected." if num_selected > 0 else "No pages selected.",
|
416 |
+
inputs=[page_selector],
|
417 |
+
outputs=[status_message],
|
418 |
+
show_progress=False
|
419 |
+
)
|
420 |
+
|
421 |
+
|
422 |
+
# When the Analyze button is clicked, run the analysis function
|
423 |
+
analyze_button.click(
|
424 |
fn=analyze_document,
|
425 |
+
inputs=[api_key_input, user_prompt_input, images_state, page_selector],
|
426 |
+
outputs=[individual_results_output, summary_output, status_message],
|
427 |
+
show_progress=False # We handle progress manually with status_message yield
|
428 |
)
|
429 |
+
|
430 |
+
# --- Footer ---
|
431 |
+
gr.HTML("<footer style='text-align: center; margin-top: 3rem; color: #9ca3af; font-size: 0.875rem;'>Β© 2025 Koshur AI. All rights reserved.</footer>")
|
432 |
+
|
433 |
+
# Clean up temp directory when the Gradio app finishes or encounters a critical error
|
434 |
+
# Note: This might not catch all termination scenarios, especially if the server crashes unexpectedly.
|
435 |
+
# A more robust solution for production might involve monitoring temp dirs periodically.
|
436 |
+
# Using demo.load() to clean up at startup and demo.close() to clean up at exit.
|
437 |
+
demo.load(fn=lambda: clean_temp_dir(current_temp_dir.value), inputs=[], outputs=[], every=10, show_progress=False) # Check & cleanup periodically (adjust interval)
|
438 |
+
# The close event handler is tricky for cleanup; rely more on periodic check or OS cleanup.
|
439 |
|
440 |
+
# --- Launch App ---
|
441 |
if __name__ == "__main__":
|
442 |
+
# The share=True option creates a public URL (useful for testing)
|
443 |
+
# The debug=True option provides more detailed error messages
|
444 |
+
demo.launch(share=False, debug=True)
|
445 |
+
|
446 |
+
# You might want to add cleanup here if running locally and not sharing
|
447 |
+
# clean_temp_dir(current_temp_dir.value) # This won't run if the app is killed externally
|