import gradio as gr from pycaret.regression import * import pandas as pd import numpy as np model = load_model('protas__fi__umur_fix') def inferencing_model(ID_Afdeling, Luas, Tandan, HK, Jumlah_Pokok, Tahun_Tanam_Awal, Tahun_Tanam_Akhir, Curah_Hujan): HK_Luas = ((HK / Luas * 100) - 100 ) pkk_ha = Jumlah_Pokok / Luas tandan_pkk = Tandan / Jumlah_Pokok umur = Tahun_Tanam_Akhir - Tahun_Tanam_Awal test_data = [[tandan_pkk, umur, pkk_ha, HK_Luas, Curah_Hujan, Jumlah_Pokok, Tandan, HK]] pred = pd.DataFrame(test_data, columns=['tandan_pkk','umur', 'pkk_ha', 'hk_pkk', 'curah_hujan', 'jumlah_pokok', 'tandan', 'hk']) prediction_test_protas = predict_model(model, data = pred) return round(int(prediction_test_protas.Label)) afd = ["SRO_I", "SRO_II", "SRO_III", "SRO_IV", "SRO_V", "SRO_VI", "SRO_VII", "SRO_VIII", "SRO_IX", "SRO_X"] iface = gr.Interface( inferencing_model, inputs = [ gr.inputs.Dropdown(choices= afd, label='Afdeling'), #Afdeling "number", #Luas "number", #Tandan "number", #HK "number", #Jumlah_Pokok "number", #Tahun_Tanam_Awal "number", #Tahun_Tanam_Akhir "number" #Curah_Hujan ], outputs= ["number"], # interpretation="default", # Removed interpretation for dataframes examples=[ ["SRO_X", 920.50, 120166, 714, 142978, 1998, 2011, 216] ], allow_flagging=False, theme="huggingface", title="Protas Prediction" ) iface.launch(debug=False)