File size: 11,643 Bytes
6d95ea1
 
0afbdda
 
6d95ea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
535a6e0
6d95ea1
 
 
 
 
 
 
0afbdda
 
6d95ea1
 
b09e850
4ae0355
535a6e0
 
6d95ea1
 
 
 
 
 
535a6e0
 
6d95ea1
 
 
 
fddd61d
6d95ea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
535a6e0
 
6d95ea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
535a6e0
 
6d95ea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ae0355
6d95ea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import os
import random
import time
import datetime
import cv2
import numpy as np
import torch
import imageio
from pathlib import Path
from tqdm import tqdm
import gradio as gr

# Import your custom modules
import utils.loss
import utils.samp
import utils.data
import utils.improc
import utils.misc
import utils.saveload
from nets.blocks import InputPadder
from nets.net34 import Net
import imageio
from demo_dense_visualize import Tracker
import spaces

# Set torch matmul precision (as in your original code)
torch.set_float32_matmul_precision('medium')

# -------------------- Utility Functions -------------------- #
def count_parameters(model):
    total_params = 0
    for name, parameter in model.named_parameters():
        if not parameter.requires_grad:
            continue
        total_params += parameter.numel()
    print('Total params: %.2f M' % (total_params/1e6))
    return total_params

def seed_everything(seed: int):
    random.seed(seed)
    os.environ["PYTHONHASHSEED"] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    # torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

seed_everything(42)
torch.set_grad_enabled(False)

# -------------------- Model Loading -------------------- #
url = "https://huggingface.co/aharley/alltracker/resolve/main/alltracker.pth"
state_dict = torch.hub.load_state_dict_from_url(url, map_location='cpu')
model = Net(16)
count_parameters(model)
model.load_state_dict(state_dict['model'], strict=True)
print('loaded ckpt')
device = 'cpu:0'
model.to(device)
for n, p in model.named_parameters():
    p.requires_grad = False
model.eval()

tracker = Tracker(
    model=model,
    mean=torch.tensor([0.485, 0.456, 0.406]).to(device).reshape(1, 3, 1, 1),
    std=torch.tensor([0.229, 0.224, 0.225]).to(device).reshape(1, 3, 1, 1),
    S=16,
    stride=8,
    inference_iters=4,
    target_res=1024,
    device=device,
)

# -------------------- Step 1: Extract the First Frame -------------------- #
def extract_first_frame(video_path, _):
    """
    Opens the video, extracts the first frame, resizes it (largest dimension 1024),
    and returns:
      - the frame for display (to be annotated),
      - the video file path (to store in state),
      - a copy of the original first frame (to be used when adding points)
    """
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        return None, None, None
    ret, frame = cap.read()
    cap.release()
    if not ret:
        return None, video_path, None
    # Convert BGR to RGB
    frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    scale = min(tracker.target_res / frame_rgb.shape[0], tracker.target_res / frame_rgb.shape[1])
    frame_resized = cv2.resize(frame_rgb, None, fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
    # Return the displayed frame, the video file path, and a copy of the original frame for point drawing.
    return frame_resized, video_path, frame_resized.copy(), []

# -------------------- Callback to Add a Clicked Point -------------------- #
def add_point(orig_frame, points, evt: gr.SelectData):
    """
    Called when the user clicks on the displayed first frame.
    - orig_frame: The original first frame image (numpy array).
    - points: The current list of point coordinates.
    - evt: Event data from the image click (expects evt.index as (x, y)).
    
    Returns the updated image (with circles drawn at all points)
    and the updated list of points.
    """
    if points is None:
        points = []
    # evt.index contains the (x, y) coordinates of the click.
    x, y = evt.index
    new_points = points.copy()
    new_points.append([x, y])
    # Draw circles on a copy of the original image.
    updated_frame = orig_frame.copy()
    for (px, py) in new_points:
        cv2.circle(updated_frame, (int(round(px)), int(round(py))), radius=5, color=(0,255,0), thickness=-1)
        
    # print(updated_frame.shape)
    return updated_frame, new_points


# -------------------- Step 2: Process Video & Track Points -------------------- #
@torch.no_grad()
@spaces.GPU
def process_video_with_points(video_path, click_points):
    """
    Runs the dense flow prediction over the entire video, tracking the user-selected points.
    Args:
        video_path: Path to the uploaded video.
        click_points: List of [x, y] coordinates selected on the first frame.
                      (Coordinates are in the same (resized) space as the displayed first frame.)
    Returns:
        A path to the output video with tracked points overlaid.
    """
    if len(click_points) == 0:
        print("No points selected for tracking.")
        return "Error: No points selected for tracking."

    # Open the video.
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        return "Error: Could not open video."
    fps = cap.get(cv2.CAP_PROP_FPS)

    # List to store frames with overlaid points.
    output_frames = []
    # Initialize the points with those selected on the first frame.

    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    pbar = tqdm(total=total_frames, desc="Processing video")
    
    tracker.reset()
    
    frame_disps = []
    try:
        while True:
            if 'cuda' in device:
                torch.cuda.empty_cache()
            ret, frame = cap.read()
            if not ret:
                break

            # Convert frame from BGR to RGB and resize as in your original code.
            frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            scale = min(tracker.target_res / frame_rgb.shape[0], tracker.target_res / frame_rgb.shape[1])
            frame_disp = cv2.resize(frame_rgb, None, fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
            frame_disps.append(frame_disp)
            
            flows = tracker.track(frame_rgb)
            
            if flows is not None:
                flows_np = flows[0].cpu().numpy()

                for i, flow_np in enumerate(flows_np):
                    # --- Update tracked points using the flow ---
                    current_points = []
                    for (x, y) in click_points:
                        xi = int(round(x))
                        yi = int(round(y))
                        # print('xi, yi', xi, yi)
                        if 0 <= yi < flow_np.shape[1] and 0 <= xi < flow_np.shape[2]:
                            dx = flow_np[0, yi, xi]
                            dy = flow_np[1, yi, xi]
                            # print('dx, dy', dx, dy)
                        else:
                            dx, dy = 0.0, 0.0
                        current_points.append([x + dx, y + dy])

                    # Draw the updated points on the frame.
                    for (x, y) in current_points:
                        cv2.circle(frame_disps[i], (int(round(x)), int(round(y))), radius=5, color=(0,255,0), thickness=-1)
                    output_frames.append(frame_disps[i])
                frame_disps = []
            pbar.update(1)
        
    except RuntimeError as e:
        # Check if the error message indicates an OOM error.
        if "out of memory" in str(e).lower():
            if 'cuda' in device:
                torch.cuda.empty_cache()
            pbar.close()
            cap.release()
            print("Error: Out of Memory during video processing.")
            return "Error: Out of Memory during video processing. Please try a smaller video or lower resolution."
        else:
            # Re-raise if it's another type of error.
            raise e
    pbar.close()
    cap.release()

    # -------------------- Save the Output Video -------------------- #
    output_path = "tracked_output.mp4"
    print(len(output_frames), output_frames[0].shape)
    imageio.mimwrite(output_path, output_frames, fps=fps)

    return output_path


# -------------------- Wrappers to Update Tracker Based on UI Settings -------------------- #
def extract_with_config(video_path, points, resolution, window_index):
    """
    Update the tracker configuration using the slider values, then extract the first frame.
    - resolution: Target resolution from slider (e.g., 512, 768, 1024).
    - window_index: An index (0–3) to be mapped to sliding window lengths {0:2, 1:4, 2:8, 3:16}.
    """
    tracker.target_res = resolution
    mapping = {0: 2, 1: 4, 2: 8, 3: 16}
    tracker.S = mapping.get(int(window_index), 16)
    return extract_first_frame(video_path, points)

@torch.no_grad()
@spaces.GPU
def process_with_config(video_path, click_points, resolution, window_index):
    """
    Update the tracker configuration using the slider values, then process the video.
    """
    tracker.target_res = resolution
    mapping = {0: 2, 1: 4, 2: 8, 3: 16}
    tracker.S = mapping.get(int(window_index), 16)
    return process_video_with_points(video_path, click_points)


if __name__ == '__main__':
    # -------------------- Gradio Interface -------------------- #
    # The interface is built in two steps:
    # 1. Upload a video and extract the first frame.
    # 2. Annotate the first frame with multiple points (using gr.Points),
    #    then run tracking on the video.
    with gr.Blocks() as demo:
        gr.Markdown("## Dense Flow Tracking with Clickable Points")
        
        with gr.Row():
            with gr.Column():
                video_input = gr.Video(label="Upload Video", value="172620-847860540_small.mp4")
                extract_btn = gr.Button("Extract First Frame")
                # Add sliders for resolution and sliding window length.
                resolution_slider = gr.Slider(minimum=512, maximum=1024, step=256, value=1024, label="Target Resolution")
                # The slider below outputs an index 0-3; we'll map it to {0:2, 1:4, 2:8, 3:16}
                window_slider = gr.Slider(minimum=0, maximum=3, step=1, value=3, label="Sliding Window Length (Index: 0->2, 1->4, 2->8, 3->16)")
            with gr.Column():
                # This image will display the first frame and be interactive.
                first_frame_display = gr.Image(label="First Frame (Click to add points)", interactive=True)
                clear_pts_btn = gr.Button("Clear Points")
        # Hidden states: video file path, original first frame, and accumulated click points.
        video_state = gr.State(None)
        orig_frame_state = gr.State(None)
        points_state = gr.State([])

        track_btn = gr.Button("Track Points")
        output_video = gr.Video(label="Tracked Video")
        
        # When "Extract First Frame" is clicked, extract and display the first frame.
        extract_btn.click(
            fn=extract_with_config,
            inputs=[video_input, points_state, resolution_slider, window_slider],
            outputs=[first_frame_display, video_state, orig_frame_state, points_state]
        )
        
        clear_pts_btn.click(
            fn=lambda _, __: (orig_frame_state, []),
            inputs=[orig_frame_state, points_state],
            outputs=[first_frame_display, points_state]
        )
        
        # When the user clicks on the image, add a point.
        first_frame_display.select(
            fn=add_point,
            inputs=[orig_frame_state, points_state],
            outputs=[first_frame_display, points_state]
        )
        
        # When "Track Points" is clicked, process the video using the accumulated points.
        track_btn.click(
            fn=process_with_config,
            inputs=[video_state, points_state, resolution_slider, window_slider],
            outputs=output_video
        )

    demo.launch()