Spaces:
Sleeping
Sleeping
File size: 24,603 Bytes
6d95ea1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 |
import torch
import utils.basic
# import utils.box
# import utils.vox
import numpy as np
import torchvision.ops as ops
from utils.basic import print_
def split_intrinsics(K):
# K is B x 3 x 3 or B x 4 x 4
fx = K[:,0,0]
fy = K[:,1,1]
x0 = K[:,0,2]
y0 = K[:,1,2]
return fx, fy, x0, y0
# def apply_pix_T_cam_py(pix_T_cam, xyz):
# fx, fy, x0, y0 = split_intrinsics(pix_T_cam)
# # xyz is shaped B x H*W x 3
# # returns xy, shaped B x H*W x 2
# B, N, C = list(xyz.shape)
# assert(C==3)
# x, y, z = xyz[:,:,0], xyz[:,:,1], xyz[:,:,2]
# fx = np.reshape(fx, [B, 1])
# fy = np.reshape(fy, [B, 1])
# x0 = np.reshape(x0, [B, 1])
# y0 = np.reshape(y0, [B, 1])
# EPS = 1e-4
# z = np.clip(z, EPS, None)
# x = (x*fx)/(z)+x0
# y = (y*fy)/(z)+y0
# xy = np.stack([x, y], axis=-1)
# return xy
def apply_pix_T_cam(pix_T_cam, xyz):
fx, fy, x0, y0 = split_intrinsics(pix_T_cam)
# xyz is shaped B x H*W x 3
# returns xy, shaped B x H*W x 2
B, N, C = list(xyz.shape)
assert(C==3)
x, y, z = torch.unbind(xyz, axis=-1)
fx = torch.reshape(fx, [B, 1])
fy = torch.reshape(fy, [B, 1])
x0 = torch.reshape(x0, [B, 1])
y0 = torch.reshape(y0, [B, 1])
EPS = 1e-4
z = torch.clamp(z, min=EPS)
x = (x*fx)/(z)+x0
y = (y*fy)/(z)+y0
xy = torch.stack([x, y], axis=-1)
return xy
# def apply_4x4_py(RT, xyz):
# # print('RT', RT.shape)
# B, N, _ = list(xyz.shape)
# ones = np.ones_like(xyz[:,:,0:1])
# xyz1 = np.concatenate([xyz, ones], 2)
# # print('xyz1', xyz1.shape)
# xyz1_t = xyz1.transpose(0,2,1)
# # print('xyz1_t', xyz1_t.shape)
# # this is B x 4 x N
# xyz2_t = np.matmul(RT, xyz1_t)
# # print('xyz2_t', xyz2_t.shape)
# xyz2 = xyz2_t.transpose(0,2,1)
# # print('xyz2', xyz2.shape)
# xyz2 = xyz2[:,:,:3]
# return xyz2
def apply_4x4(RT, xyz):
B, N, _ = list(xyz.shape)
ones = torch.ones_like(xyz[:,:,0:1])
xyz1 = torch.cat([xyz, ones], 2)
xyz1_t = torch.transpose(xyz1, 1, 2)
# this is B x 4 x N
xyz2_t = torch.matmul(RT, xyz1_t)
xyz2 = torch.transpose(xyz2_t, 1, 2)
xyz2 = xyz2[:,:,:3]
return xyz2
def apply_3x3(RT, xy):
B, N, _ = list(xy.shape)
ones = torch.ones_like(xy[:,:,0:1])
xy1 = torch.cat([xy, ones], 2)
xy1_t = torch.transpose(xy1, 1, 2)
# this is B x 4 x N
xy2_t = torch.matmul(RT, xy1_t)
xy2 = torch.transpose(xy2_t, 1, 2)
xy2 = xy2[:,:,:2]
return xy2
def generate_polygon(ctr_x, ctr_y, avg_r, irregularity, spikiness, num_verts):
'''
Start with the center of the polygon at ctr_x, ctr_y,
Then creates the polygon by sampling points on a circle around the center.
Random noise is added by varying the angular spacing between sequential points,
and by varying the radial distance of each point from the centre.
Params:
ctr_x, ctr_y - coordinates of the "centre" of the polygon
avg_r - in px, the average radius of this polygon, this roughly controls how large the polygon is, really only useful for order of magnitude.
irregularity - [0,1] indicating how much variance there is in the angular spacing of vertices. [0,1] will map to [0, 2pi/numberOfVerts]
spikiness - [0,1] indicating how much variance there is in each vertex from the circle of radius avg_r. [0,1] will map to [0, avg_r]
num_verts
Returns:
np.array [num_verts, 2] - CCW order.
'''
# spikiness
spikiness = np.clip(spikiness, 0, 1) * avg_r
# generate n angle steps
irregularity = np.clip(irregularity, 0, 1) * 2 * np.pi / num_verts
lower = (2*np.pi / num_verts) - irregularity
upper = (2*np.pi / num_verts) + irregularity
# angle steps
angle_steps = np.random.uniform(lower, upper, num_verts)
sc = (2 * np.pi) / angle_steps.sum()
angle_steps *= sc
# get all radii
angle = np.random.uniform(0, 2*np.pi)
radii = np.clip(np.random.normal(avg_r, spikiness, num_verts), 0, 2 * avg_r)
# compute all points
points = []
for i in range(num_verts):
x = ctr_x + radii[i] * np.cos(angle)
y = ctr_y + radii[i] * np.sin(angle)
points.append([x, y])
angle += angle_steps[i]
return np.array(points).astype(int)
def get_random_affine_2d(B, rot_min=-5.0, rot_max=5.0, tx_min=-0.1, tx_max=0.1, ty_min=-0.1, ty_max=0.1, sx_min=-0.05, sx_max=0.05, sy_min=-0.05, sy_max=0.05, shx_min=-0.05, shx_max=0.05, shy_min=-0.05, shy_max=0.05):
'''
Params:
rot_min: rotation amount min
rot_max: rotation amount max
tx_min: translation x min
tx_max: translation x max
ty_min: translation y min
ty_max: translation y max
sx_min: scaling x min
sx_max: scaling x max
sy_min: scaling y min
sy_max: scaling y max
shx_min: shear x min
shx_max: shear x max
shy_min: shear y min
shy_max: shear y max
Returns:
transformation matrix: (B, 3, 3)
'''
# rotation
if rot_max - rot_min != 0:
rot_amount = np.random.uniform(low=rot_min, high=rot_max, size=B)
rot_amount = np.pi/180.0*rot_amount
else:
rot_amount = rot_min
rotation = np.zeros((B, 3, 3)) # B, 3, 3
rotation[:, 2, 2] = 1
rotation[:, 0, 0] = np.cos(rot_amount)
rotation[:, 0, 1] = -np.sin(rot_amount)
rotation[:, 1, 0] = np.sin(rot_amount)
rotation[:, 1, 1] = np.cos(rot_amount)
# translation
translation = np.zeros((B, 3, 3)) # B, 3, 3
translation[:, [0,1,2], [0,1,2]] = 1
if (tx_max - tx_min) > 0:
trans_x = np.random.uniform(low=tx_min, high=tx_max, size=B)
translation[:, 0, 2] = trans_x
# else:
# translation[:, 0, 2] = tx_max
if ty_max - ty_min != 0:
trans_y = np.random.uniform(low=ty_min, high=ty_max, size=B)
translation[:, 1, 2] = trans_y
# else:
# translation[:, 1, 2] = ty_max
# scaling
scaling = np.zeros((B, 3, 3)) # B, 3, 3
scaling[:, [0,1,2], [0,1,2]] = 1
if (sx_max - sx_min) > 0:
scale_x = 1 + np.random.uniform(low=sx_min, high=sx_max, size=B)
scaling[:, 0, 0] = scale_x
# else:
# scaling[:, 0, 0] = sx_max
if (sy_max - sy_min) > 0:
scale_y = 1 + np.random.uniform(low=sy_min, high=sy_max, size=B)
scaling[:, 1, 1] = scale_y
# else:
# scaling[:, 1, 1] = sy_max
# shear
shear = np.zeros((B, 3, 3)) # B, 3, 3
shear[:, [0,1,2], [0,1,2]] = 1
if (shx_max - shx_min) > 0:
shear_x = np.random.uniform(low=shx_min, high=shx_max, size=B)
shear[:, 0, 1] = shear_x
# else:
# shear[:, 0, 1] = shx_max
if (shy_max - shy_min) > 0:
shear_y = np.random.uniform(low=shy_min, high=shy_max, size=B)
shear[:, 1, 0] = shear_y
# else:
# shear[:, 1, 0] = shy_max
# compose all those
rt = np.einsum("ijk,ikl->ijl", rotation, translation)
ss = np.einsum("ijk,ikl->ijl", scaling, shear)
trans = np.einsum("ijk,ikl->ijl", rt, ss)
return trans
def get_centroid_from_box2d(box2d):
ymin = box2d[:,0]
xmin = box2d[:,1]
ymax = box2d[:,2]
xmax = box2d[:,3]
x = (xmin+xmax)/2.0
y = (ymin+ymax)/2.0
return y, x
def normalize_boxlist2d(boxlist2d, H, W):
boxlist2d = boxlist2d.clone()
ymin, xmin, ymax, xmax = torch.unbind(boxlist2d, dim=2)
ymin = ymin / float(H)
ymax = ymax / float(H)
xmin = xmin / float(W)
xmax = xmax / float(W)
boxlist2d = torch.stack([ymin, xmin, ymax, xmax], dim=2)
return boxlist2d
def unnormalize_boxlist2d(boxlist2d, H, W):
boxlist2d = boxlist2d.clone()
ymin, xmin, ymax, xmax = torch.unbind(boxlist2d, dim=2)
ymin = ymin * float(H)
ymax = ymax * float(H)
xmin = xmin * float(W)
xmax = xmax * float(W)
boxlist2d = torch.stack([ymin, xmin, ymax, xmax], dim=2)
return boxlist2d
def unnormalize_box2d(box2d, H, W):
return unnormalize_boxlist2d(box2d.unsqueeze(1), H, W).squeeze(1)
def normalize_box2d(box2d, H, W):
return normalize_boxlist2d(box2d.unsqueeze(1), H, W).squeeze(1)
def get_size_from_box2d(box2d):
ymin = box2d[:,0]
xmin = box2d[:,1]
ymax = box2d[:,2]
xmax = box2d[:,3]
height = ymax-ymin
width = xmax-xmin
return height, width
def crop_and_resize(im, boxlist, PH, PW, boxlist_is_normalized=False):
B, C, H, W = im.shape
B2, N, D = boxlist.shape
assert(B==B2)
assert(D==4)
# PH, PW is the size to resize to
# print('im', im.shape)
# output is B,N,C,PH,PW
# pt wants xy xy, unnormalized
if boxlist_is_normalized:
boxlist_unnorm = unnormalize_boxlist2d(boxlist, H, W)
else:
boxlist_unnorm = boxlist
ymin, xmin, ymax, xmax = boxlist_unnorm.unbind(2)
# boxlist_pt = torch.stack([boxlist_unnorm[:,1], boxlist_unnorm[:,0], boxlist_unnorm[:,3], boxlist_unnorm[:,2]], dim=1)
boxlist_pt = torch.stack([xmin, ymin, xmax, ymax], dim=2)
# we want a B-len list of K x 4 arrays
# print('im', im.shape)
# print('boxlist', boxlist.shape)
# print('boxlist_pt', boxlist_pt.shape)
# boxlist_pt = list(boxlist_pt.unbind(0))
# crops = []
# for b in range(B):
# crops_b = ops.roi_align(im[b:b+1], [boxlist_pt[b]], output_size=(PH, PW))
# crops.append(crops_b)
# # # crops = im
# inds = torch.arange(B).reshape(B,1)
# # boxlist_pt = torch.cat([inds, boxlist_
# boxlist_pt = list(boxlist_pt.unbind(0)
# crops = ops.roi_align(im, [boxlist_pt[b]], output_size=(PH, PW))
crops = ops.roi_align(im, list(boxlist_pt.unbind(0)), output_size=(PH, PW))
# print('crops', crops.shape)
# crops = crops.reshape(B,N,C,PH,PW)
# crops = []
# for b in range(B):
# crop_b = ops.roi_align(im[b:b+1], [boxlist_pt[b]], output_size=(PH, PW))
# print('crop_b', crop_b.shape)
# crops.append(crop_b)
# crops = torch.stack(crops, dim=0)
# print('crops', crops.shape)
# boxlist_list = boxlist_pt.unbind(0)
# print('rgb_crop', rgb_crop.shape)
return crops
# def get_boxlist_from_centroid_and_size(cy, cx, h, w, clip=True):
# # cy,cx are both B,N
# ymin = cy - h/2
# ymax = cy + h/2
# xmin = cx - w/2
# xmax = cx + w/2
# box = torch.stack([ymin, xmin, ymax, xmax], dim=-1)
# if clip:
# box = torch.clamp(box, 0, 1)
# return box
def get_boxlist_from_centroid_and_size(cy, cx, h, w):#, clip=False):
# cy,cx are the same shape
ymin = cy - h/2
ymax = cy + h/2
xmin = cx - w/2
xmax = cx + w/2
# if clip:
# ymin = torch.clamp(ymin, 0, H-1)
# ymax = torch.clamp(ymax, 0, H-1)
# xmin = torch.clamp(xmin, 0, W-1)
# xmax = torch.clamp(xmax, 0, W-1)
box = torch.stack([ymin, xmin, ymax, xmax], dim=-1)
return box
def get_box2d_from_mask(mask, normalize=False):
# mask is B, 1, H, W
B, C, H, W = mask.shape
assert(C==1)
xy = utils.basic.gridcloud2d(B, H, W, norm=False, device=mask.device) # B, H*W, 2
box = torch.zeros((B, 4), dtype=torch.float32, device=mask.device)
for b in range(B):
xy_b = xy[b] # H*W, 2
mask_b = mask[b].reshape(H*W)
xy_ = xy_b[mask_b > 0]
x_ = xy_[:,0]
y_ = xy_[:,1]
ymin = torch.min(y_)
ymax = torch.max(y_)
xmin = torch.min(x_)
xmax = torch.max(x_)
box[b] = torch.stack([ymin, xmin, ymax, xmax], dim=0)
if normalize:
box = normalize_boxlist2d(box.unsqueeze(1), H, W).squeeze(1)
return box
def convert_box2d_to_intrinsics(box2d, pix_T_cam, H, W, use_image_aspect_ratio=True, mult_padding=1.0):
# box2d is B x 4, with ymin, xmin, ymax, xmax in normalized coords
# ymin, xmin, ymax, xmax = torch.unbind(box2d, dim=1)
# H, W is the original size of the image
# mult_padding is relative to object size in pixels
# i assume we're rendering an image the same size as the original (H, W)
if not mult_padding==1.0:
y, x = get_centroid_from_box2d(box2d)
h, w = get_size_from_box2d(box2d)
box2d = get_box2d_from_centroid_and_size(
y, x, h*mult_padding, w*mult_padding, clip=False)
if use_image_aspect_ratio:
h, w = get_size_from_box2d(box2d)
y, x = get_centroid_from_box2d(box2d)
# note h,w are relative right now
# we need to undo this, to see the real ratio
h = h*float(H)
w = w*float(W)
box_ratio = h/w
im_ratio = H/float(W)
# print('box_ratio:', box_ratio)
# print('im_ratio:', im_ratio)
if box_ratio >= im_ratio:
w = h/im_ratio
# print('setting w:', h/im_ratio)
else:
h = w*im_ratio
# print('setting h:', w*im_ratio)
box2d = get_box2d_from_centroid_and_size(
y, x, h/float(H), w/float(W), clip=False)
assert(h > 1e-4)
assert(w > 1e-4)
ymin, xmin, ymax, xmax = torch.unbind(box2d, dim=1)
fx, fy, x0, y0 = split_intrinsics(pix_T_cam)
# the topleft of the new image will now have a different offset from the center of projection
new_x0 = x0 - xmin*W
new_y0 = y0 - ymin*H
pix_T_cam = pack_intrinsics(fx, fy, new_x0, new_y0)
# this alone will give me an image in original resolution,
# with its topleft at the box corner
box_h, box_w = get_size_from_box2d(box2d)
# these are normalized, and shaped B. (e.g., [0.4], [0.3])
# we are going to scale the image by the inverse of this,
# since we are zooming into this area
sy = 1./box_h
sx = 1./box_w
pix_T_cam = scale_intrinsics(pix_T_cam, sx, sy)
return pix_T_cam, box2d
def generatePolygon(ctr_x, ctr_y, avg_r, irregularity, spikiness, num_verts):
'''
Start with the center of the polygon at ctr_x, ctr_y,
Then creates the polygon by sampling points on a circle around the center.
Random noise is added by varying the angular spacing between sequential points,
and by varying the radial distance of each point from the centre.
Params:
ctr_x, ctr_y - coordinates of the "centre" of the polygon
avg_r - in px, the average radius of this polygon, this roughly controls how large the polygon is, really only useful for order of magnitude.
irregularity - [0,1] indicating how much variance there is in the angular spacing of vertices. [0,1] will map to [0, 2pi/numberOfVerts]
spikiness - [0,1] indicating how much variance there is in each vertex from the circle of radius avg_r. [0,1] will map to [0, avg_r]
num_verts
Returns:
np.array [num_verts, 2] - CCW order.
'''
# spikiness
spikiness = np.clip(spikiness, 0, 1) * avg_r
# generate n angle steps
irregularity = np.clip(irregularity, 0, 1) * 2 * np.pi / num_verts
lower = (2*np.pi / num_verts) - irregularity
upper = (2*np.pi / num_verts) + irregularity
# angle steps
angle_steps = np.random.uniform(lower, upper, num_verts)
sc = (2 * np.pi) / angle_steps.sum()
angle_steps *= sc
# get all radii
angle = np.random.uniform(0, 2*np.pi)
radii = np.clip(np.random.normal(avg_r, spikiness, num_verts), 0, 2 * avg_r)
# compute all points
points = []
for i in range(num_verts):
x = ctr_x + radii[i] * np.cos(angle)
y = ctr_y + radii[i] * np.sin(angle)
points.append([x, y])
angle += angle_steps[i]
return np.array(points).astype(int)
def get_random_affine_2d(B, rot_min=-5.0, rot_max=5.0, tx_min=-0.1, tx_max=0.1, ty_min=-0.1, ty_max=0.1, sx_min=-0.05, sx_max=0.05, sy_min=-0.05, sy_max=0.05, shx_min=-0.05, shx_max=0.05, shy_min=-0.05, shy_max=0.05):
'''
Params:
rot_min: rotation amount min
rot_max: rotation amount max
tx_min: translation x min
tx_max: translation x max
ty_min: translation y min
ty_max: translation y max
sx_min: scaling x min
sx_max: scaling x max
sy_min: scaling y min
sy_max: scaling y max
shx_min: shear x min
shx_max: shear x max
shy_min: shear y min
shy_max: shear y max
Returns:
transformation matrix: (B, 3, 3)
'''
# rotation
if rot_max - rot_min != 0:
rot_amount = np.random.uniform(low=rot_min, high=rot_max, size=B)
rot_amount = np.pi/180.0*rot_amount
else:
rot_amount = rot_min
rotation = np.zeros((B, 3, 3)) # B, 3, 3
rotation[:, 2, 2] = 1
rotation[:, 0, 0] = np.cos(rot_amount)
rotation[:, 0, 1] = -np.sin(rot_amount)
rotation[:, 1, 0] = np.sin(rot_amount)
rotation[:, 1, 1] = np.cos(rot_amount)
# translation
translation = np.zeros((B, 3, 3)) # B, 3, 3
translation[:, [0,1,2], [0,1,2]] = 1
if tx_max - tx_min != 0:
trans_x = np.random.uniform(low=tx_min, high=tx_max, size=B)
translation[:, 0, 2] = trans_x
else:
translation[:, 0, 2] = tx_max
if ty_max - ty_min != 0:
trans_y = np.random.uniform(low=ty_min, high=ty_max, size=B)
translation[:, 1, 2] = trans_y
else:
translation[:, 1, 2] = ty_max
# scaling
scaling = np.zeros((B, 3, 3)) # B, 3, 3
scaling[:, [0,1,2], [0,1,2]] = 1
if sx_max - sx_min != 0:
scale_x = 1 + np.random.uniform(low=sx_min, high=sx_max, size=B)
scaling[:, 0, 0] = scale_x
else:
scaling[:, 0, 0] = sx_max
if sy_max - sy_min != 0:
scale_y = 1 + np.random.uniform(low=sy_min, high=sy_max, size=B)
scaling[:, 1, 1] = scale_y
else:
scaling[:, 1, 1] = sy_max
# shear
shear = np.zeros((B, 3, 3)) # B, 3, 3
shear[:, [0,1,2], [0,1,2]] = 1
if shx_max - shx_min != 0:
shear_x = np.random.uniform(low=shx_min, high=shx_max, size=B)
shear[:, 0, 1] = shear_x
else:
shear[:, 0, 1] = shx_max
if shy_max - shy_min != 0:
shear_y = np.random.uniform(low=shy_min, high=shy_max, size=B)
shear[:, 1, 0] = shear_y
else:
shear[:, 1, 0] = shy_max
# compose all those
rt = np.einsum("ijk,ikl->ijl", rotation, translation)
ss = np.einsum("ijk,ikl->ijl", scaling, shear)
trans = np.einsum("ijk,ikl->ijl", rt, ss)
return trans
def pixels2camera(x,y,z,fx,fy,x0,y0):
# x and y are locations in pixel coordinates, z is a depth in meters
# they can be images or pointclouds
# fx, fy, x0, y0 are camera intrinsics
# returns xyz, sized B x N x 3
B = x.shape[0]
fx = torch.reshape(fx, [B,1])
fy = torch.reshape(fy, [B,1])
x0 = torch.reshape(x0, [B,1])
y0 = torch.reshape(y0, [B,1])
x = torch.reshape(x, [B,-1])
y = torch.reshape(y, [B,-1])
z = torch.reshape(z, [B,-1])
# unproject
x = (z/fx)*(x-x0)
y = (z/fy)*(y-y0)
xyz = torch.stack([x,y,z], dim=2)
# B x N x 3
return xyz
def camera2pixels(xyz, pix_T_cam):
# xyz is shaped B x H*W x 3
# returns xy, shaped B x H*W x 2
fx, fy, x0, y0 = split_intrinsics(pix_T_cam)
x, y, z = torch.unbind(xyz, dim=-1)
B = list(z.shape)[0]
fx = torch.reshape(fx, [B,1])
fy = torch.reshape(fy, [B,1])
x0 = torch.reshape(x0, [B,1])
y0 = torch.reshape(y0, [B,1])
x = torch.reshape(x, [B,-1])
y = torch.reshape(y, [B,-1])
z = torch.reshape(z, [B,-1])
EPS = 1e-4
z = torch.clamp(z, min=EPS)
x = (x*fx)/z + x0
y = (y*fy)/z + y0
xy = torch.stack([x, y], dim=-1)
return xy
def depth2pointcloud(z, pix_T_cam):
B, C, H, W = list(z.shape)
device = z.device
y, x = utils.basic.meshgrid2d(B, H, W, device=device)
z = torch.reshape(z, [B, H, W])
fx, fy, x0, y0 = split_intrinsics(pix_T_cam)
xyz = pixels2camera(x, y, z, fx, fy, x0, y0)
return xyz
def create_depth_image_single(xy, z, H, W, force_positive=True, max_val=100.0, serial=False, slices=20):
# turn the xy coordinates into image inds
xy = torch.round(xy).long()
depth = torch.zeros(H*W, dtype=torch.float32, device=xy.device)
depth[:] = max_val
# lidar reports a sphere of measurements
# only use the inds that are within the image bounds
# also, only use forward-pointing depths (z > 0)
valid_inds = (xy[:,0] <= W-1) & (xy[:,1] <= H-1) & (xy[:,0] >= 0) & (xy[:,1] >= 0) & (z[:] > 0)
# gather these up
xy = xy[valid_inds]
z = z[valid_inds]
inds = utils.basic.sub2ind(H, W, xy[:,1], xy[:,0]).long()
if not serial:
depth[inds] = z
else:
if False:
for (index, replacement) in zip(inds, z):
if depth[index] > replacement:
depth[index] = replacement
# ok my other idea is:
# sort the depths by distance
# create N depth maps
# merge them back-to-front
# actually maybe you don't even need the separate maps
sort_inds = torch.argsort(z, descending=True)
xy = xy[sort_inds]
z = z[sort_inds]
N = len(sort_inds)
def split(a, n):
k, m = divmod(len(a), n)
return (a[i*k+min(i, m):(i+1)*k+min(i+1, m)] for i in range(n))
slice_inds = split(range(N), slices)
for si in slice_inds:
mini_z = z[si]
mini_xy = xy[si]
inds = utils.basic.sub2ind(H, W, mini_xy[:,1], mini_xy[:,0]).long()
depth[inds] = mini_z
# cool; this is rougly as fast as the parallel, and as accurate as the serial
if False:
print('inds', inds.shape)
unique, inverse, counts = torch.unique(inds, return_inverse=True, return_counts=True)
print('unique', unique.shape)
perm = torch.arange(inverse.size(0), dtype=inverse.dtype, device=inverse.device)
inverse, perm = inverse.flip([0]), perm.flip([0])
perm = inverse.new_empty(unique.size(0)).scatter_(0, inverse, perm)
# new_inds = inds[inverse_inds]
# depth[new_inds] = z[unique_inds]
depth[unique] = z[perm]
# now for the duplicates...
dup = counts > 1
dup_unique = unique[dup]
print('dup_unique', dup_unique.shape)
depth[dup_unique] = 0.5
if force_positive:
# valid = (depth > 0.0).float()
depth[torch.where(depth == 0.0)] = max_val
# else:
# valid = torch.ones_like(depth)
valid = (depth > 0.0).float() * (depth < max_val).float()
depth = torch.reshape(depth, [1, H, W])
valid = torch.reshape(valid, [1, H, W])
return depth, valid
def create_depth_image(pix_T_cam, xyz_cam, H, W, offset_amount=0, max_val=100.0, serial=False, slices=20):
B, N, D = list(xyz_cam.shape)
assert(D==3)
B2, E, F = list(pix_T_cam.shape)
assert(B==B2)
assert(E==4)
assert(F==4)
xy = apply_pix_T_cam(pix_T_cam, xyz_cam)
z = xyz_cam[:,:,2]
depth = torch.zeros(B, 1, H, W, dtype=torch.float32, device=xyz_cam.device)
valid = torch.zeros(B, 1, H, W, dtype=torch.float32, device=xyz_cam.device)
for b in list(range(B)):
xy_b, z_b = xy[b], z[b]
ind = z_b > 0
xy_b = xy_b[ind]
z_b = z_b[ind]
depth_b, valid_b = create_depth_image_single(xy_b, z_b, H, W, max_val=max_val, serial=serial, slices=slices)
if offset_amount:
depth_b = depth_b.reshape(-1)
valid_b = valid_b.reshape(-1)
for off_x in range(offset_amount):
for off_y in range(offset_amount):
for sign in [-1,1]:
offset = np.array([sign*off_x,sign*off_y]).astype(np.float32)
offset = torch.from_numpy(offset).reshape(1, 2).to(xyz_cam.device)
# offsets.append(offset)
depth_, valid_ = create_depth_image_single(xy_b + offset, z_b, H, W, max_val=max_val)
depth_ = depth_.reshape(-1)
valid_ = valid_.reshape(-1)
# at invalid locations, use this new value
depth_b[valid_b==0] = depth_[valid_b==0]
valid_b[valid_b==0] = valid_[valid_b==0]
depth_b = depth_b.reshape(1, H, W)
valid_b = valid_b.reshape(1, H, W)
depth[b] = depth_b
valid[b] = valid_b
return depth, valid
|