File size: 38,538 Bytes
6d95ea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
import torch
import numpy as np
import math
import torch.nn.functional as F
import utils.basic
from typing import Tuple, Union

def standardize_test_data(rgbs, trajs, visibs, valids, S_cap=600, only_first=False, seq_len=None):
    trajs = trajs.astype(np.float32) # S,N,2
    visibs = visibs.astype(np.float32) # S,N
    valids = valids.astype(np.float32) # S,N
    
    visval_ok = np.sum(valids*visibs, axis=0) > 1
    trajs = trajs[:,visval_ok]
    visibs = visibs[:,visval_ok]
    valids = valids[:,visval_ok]

    # fill in missing data
    N = trajs.shape[1]
    for ni in range(N):
        trajs[:,ni] = utils.misc.data_replace_with_nearest(trajs[:,ni], valids[:,ni])

    # use cap or seq_len
    if seq_len is not None:
        S = min(len(rgbs), seq_len)
    else:
        S = len(rgbs)
    S = min(S, S_cap)

    if only_first:
        # we'll find the best frame to start on
        best_count = 0
        best_ind = 0

        for si in range(0,len(rgbs)-64):
            # try this slice
            visibs_ = visibs[si:min(si+S,len(rgbs)+1)] # S,N
            valids_ = valids[si:min(si+S,len(rgbs)+1)] # S,N
            visval_ok0 = (visibs_[0]*valids_[0]) > 0 # N
            visval_okA = np.sum(visibs_*valids_, axis=0) > 1 # N
            all_ok = visval_ok0 & visval_okA
            # print('- slicing %d to %d; sum(ok) %d' % (si, min(si+S,len(rgbs)+1), np.sum(all_ok)))
            if np.sum(all_ok) > best_count:
                best_count = np.sum(all_ok)
                best_ind = si
        si = best_ind
        rgbs = rgbs[si:si+S]
        trajs = trajs[si:si+S]
        visibs = visibs[si:si+S]
        valids = valids[si:si+S]
        vis_ok0 = visibs[0] > 0  # N
        trajs = trajs[:,vis_ok0]
        visibs = visibs[:,vis_ok0]
        valids = valids[:,vis_ok0]
        # print('- best_count', best_count, 'best_ind', best_ind)

    if seq_len is not None:
        rgbs = rgbs[:seq_len]
        trajs = trajs[:seq_len]
        valids = valids[:seq_len]
    
    # req two timesteps valid (after seqlen trim)
    visval_ok = np.sum(visibs*valids, axis=0) > 1
    trajs = trajs[:,visval_ok]
    valids = valids[:,visval_ok]
    visibs = visibs[:,visval_ok]

    return rgbs, trajs, visibs, valids

    

def get_2d_sincos_pos_embed(
    embed_dim: int, grid_size: Union[int, Tuple[int, int]]
) -> torch.Tensor:
    """
    This function initializes a grid and generates a 2D positional embedding using sine and cosine functions.
    It is a wrapper of get_2d_sincos_pos_embed_from_grid.
    Args:
    - embed_dim: The embedding dimension.
    - grid_size: The grid size.
    Returns:
    - pos_embed: The generated 2D positional embedding.
    """
    if isinstance(grid_size, tuple):
        grid_size_h, grid_size_w = grid_size
    else:
        grid_size_h = grid_size_w = grid_size
    grid_h = torch.arange(grid_size_h, dtype=torch.float)
    grid_w = torch.arange(grid_size_w, dtype=torch.float)
    grid = torch.meshgrid(grid_w, grid_h, indexing="xy")
    grid = torch.stack(grid, dim=0)
    grid = grid.reshape([2, 1, grid_size_h, grid_size_w])
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    return pos_embed.reshape(1, grid_size_h, grid_size_w, -1).permute(0, 3, 1, 2)


def get_2d_sincos_pos_embed_from_grid(
    embed_dim: int, grid: torch.Tensor
) -> torch.Tensor:
    """
    This function generates a 2D positional embedding from a given grid using sine and cosine functions.

    Args:
    - embed_dim: The embedding dimension.
    - grid: The grid to generate the embedding from.

    Returns:
    - emb: The generated 2D positional embedding.
    """
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)

    emb = torch.cat([emb_h, emb_w], dim=2)  # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(
    embed_dim: int, pos: torch.Tensor
) -> torch.Tensor:
    """
    This function generates a 1D positional embedding from a given grid using sine and cosine functions.

    Args:
    - embed_dim: The embedding dimension.
    - pos: The position to generate the embedding from.

    Returns:
    - emb: The generated 1D positional embedding.
    """
    assert embed_dim % 2 == 0
    omega = torch.arange(embed_dim // 2, dtype=torch.double)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = torch.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = torch.sin(out)  # (M, D/2)
    emb_cos = torch.cos(out)  # (M, D/2)

    emb = torch.cat([emb_sin, emb_cos], dim=1)  # (M, D)
    return emb[None].float()


def get_2d_embedding(xy: torch.Tensor, C: int, cat_coords: bool = True) -> torch.Tensor:
    """
    This function generates a 2D positional embedding from given coordinates using sine and cosine functions.

    Args:
    - xy: The coordinates to generate the embedding from.
    - C: The size of the embedding.
    - cat_coords: A flag to indicate whether to concatenate the original coordinates to the embedding.

    Returns:
    - pe: The generated 2D positional embedding.
    """
    B, N, D = xy.shape
    assert D == 2

    x = xy[:, :, 0:1]
    y = xy[:, :, 1:2]
    div_term = (
        torch.arange(0, C, 2, device=xy.device, dtype=torch.float32) * (1000.0 / C)
    ).reshape(1, 1, int(C / 2))

    pe_x = torch.zeros(B, N, C, device=xy.device, dtype=torch.float32)
    pe_y = torch.zeros(B, N, C, device=xy.device, dtype=torch.float32)

    pe_x[:, :, 0::2] = torch.sin(x * div_term)
    pe_x[:, :, 1::2] = torch.cos(x * div_term)

    pe_y[:, :, 0::2] = torch.sin(y * div_term)
    pe_y[:, :, 1::2] = torch.cos(y * div_term)

    pe = torch.cat([pe_x, pe_y], dim=2)  # (B, N, C*3)
    if cat_coords:
        pe = torch.cat([xy, pe], dim=2)  # (B, N, C*3+3)
    return pe

# from datasets.dataset import mask2bbox

# from pips2
def posemb_sincos_2d_xy(xy, C, temperature=10000, dtype=torch.float32, cat_coords=False):
    device = xy.device
    dtype = xy.dtype
    B, S, D = xy.shape
    assert(D==2)
    x = xy[:,:,0]
    y = xy[:,:,1]
    assert (C % 4) == 0, 'feature dimension must be multiple of 4 for sincos emb'
    omega = torch.arange(C // 4, device=device) / (C // 4 - 1)
    omega = 1. / (temperature ** omega)

    y = y.flatten()[:, None] * omega[None, :]
    x = x.flatten()[:, None] * omega[None, :] 
    pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1) 
    pe = pe.reshape(B,S,C).type(dtype)
    if cat_coords:
        pe = torch.cat([pe, xy], dim=2) # B,N,C+2
    return pe


# # prevent circular imports
# def mask2bbox(mask):
#     if mask.ndim == 3:
#         mask = mask[..., 0]
#     ys, xs = np.where(mask > 0.4)
#     if ys.size == 0 or xs.size==0:
#         return np.array((0, 0, 0, 0), dtype=int)
#     lt = np.array([np.min(xs), np.min(ys)])
#     rb = np.array([np.max(xs), np.max(ys)]) + 1
#     return np.concatenate([lt, rb])

# def get_stark_2d_embedding(H, W, C=64, device='cuda:0', temperature=10000, normalize=True):
#     scale = 2*math.pi
#     mask = torch.ones((1,H,W), dtype=torch.float32, device=device)
#     y_embed = mask.cumsum(1, dtype=torch.float32)  # cumulative sum along axis 1 (h axis) --> (b, h, w)
#     x_embed = mask.cumsum(2, dtype=torch.float32)  # cumulative sum along axis 2 (w axis) --> (b, h, w)
#     if normalize:
#         eps = 1e-6
#         y_embed = y_embed / (y_embed[:, -1:, :] + eps) * scale  # 2pi * (y / sigma(y))
#         x_embed = x_embed / (x_embed[:, :, -1:] + eps) * scale  # 2pi * (x / sigma(x))

#     dim_t = torch.arange(C, dtype=torch.float32, device=device)  # (0,1,2,...,d/2)
#     dim_t = temperature ** (2 * (dim_t // 2) / C)

#     pos_x = x_embed[:, :, :, None] / dim_t # (b,h,w,d/2)
#     pos_y = y_embed[:, :, :, None] / dim_t # (b,h,w,d/2)
#     pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) # (b,h,w,d/2)
#     pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) # (b,h,w,d/2)
#     pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)  # (b,h,w,d)
#     return pos

# def get_1d_embedding(x, C, cat_coords=False):
#     B, N, D = x.shape
#     assert(D==1)

#     div_term = (torch.arange(0, C, 2, device=x.device, dtype=torch.float32) * (10000.0 / C)).reshape(1, 1, int(C/2))
    
#     pe_x = torch.zeros(B, N, C, device=x.device, dtype=torch.float32)
    
#     pe_x[:, :, 0::2] = torch.sin(x * div_term)
#     pe_x[:, :, 1::2] = torch.cos(x * div_term)
    
#     if cat_coords:
#         pe_x = torch.cat([pe, x], dim=2) # B,N,C*2+2
#     return pe_x

# def posemb_sincos_2d(h, w, dim, temperature=10000, dtype=torch.float32, device='cuda:0'):

#     y, x = torch.meshgrid(torch.arange(h, device = device), torch.arange(w, device = device), indexing = 'ij')
#     assert (dim % 4) == 0, 'feature dimension must be multiple of 4 for sincos emb'
#     omega = torch.arange(dim // 4, device = device) / (dim // 4 - 1)
#     omega = 1. / (temperature ** omega)

#     y = y.flatten()[:, None] * omega[None, :]
#     x = x.flatten()[:, None] * omega[None, :] 
#     pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1) # B,C,H,W
#     return pe.type(dtype)

def iou(bbox1, bbox2):
    # bbox1, bbox2: [x1, y1, x2, y2]
    x1, y1, x2, y2 = bbox1
    x1_, y1_, x2_, y2_ = bbox2
    inter_x1 = max(x1, x1_)
    inter_y1 = max(y1, y1_)
    inter_x2 = min(x2, x2_)
    inter_y2 = min(y2, y2_)
    inter_area = max(0, inter_x2 - inter_x1) * max(0, inter_y2 - inter_y1)
    area1 = (x2 - x1) * (y2 - y1)
    area2 = (x2_ - x1_) * (y2_ - y1_)
    iou = inter_area / (area1 + area2 - inter_area)
    return iou

# def get_2d_embedding(xy, C, cat_coords=False):
#     B, N, D = xy.shape
#     assert(D==2)

#     x = xy[:,:,0:1]
#     y = xy[:,:,1:2]
#     div_term = (torch.arange(0, C, 2, device=xy.device, dtype=torch.float32) * (10000.0 / C)).reshape(1, 1, int(C/2))
    
#     pe_x = torch.zeros(B, N, C, device=xy.device, dtype=torch.float32)
#     pe_y = torch.zeros(B, N, C, device=xy.device, dtype=torch.float32)
    
#     pe_x[:, :, 0::2] = torch.sin(x * div_term)
#     pe_x[:, :, 1::2] = torch.cos(x * div_term)
    
#     pe_y[:, :, 0::2] = torch.sin(y * div_term)
#     pe_y[:, :, 1::2] = torch.cos(y * div_term)
    
#     pe = torch.cat([pe_x, pe_y], dim=2) # B,N,C*2
#     if cat_coords:
#         pe = torch.cat([pe, xy], dim=2) # B,N,C*2+2
#     return pe

# def get_3d_embedding(xyz, C, cat_coords=False):
#     B, N, D = xyz.shape
#     assert(D==3)

#     x = xyz[:,:,0:1]
#     y = xyz[:,:,1:2]
#     z = xyz[:,:,2:3]
#     div_term = (torch.arange(0, C, 2, device=xyz.device, dtype=torch.float32) * (10000.0 / C)).reshape(1, 1, int(C/2))
    
#     pe_x = torch.zeros(B, N, C, device=xyz.device, dtype=torch.float32)
#     pe_y = torch.zeros(B, N, C, device=xyz.device, dtype=torch.float32)
#     pe_z = torch.zeros(B, N, C, device=xyz.device, dtype=torch.float32)
    
#     pe_x[:, :, 0::2] = torch.sin(x * div_term)
#     pe_x[:, :, 1::2] = torch.cos(x * div_term)
    
#     pe_y[:, :, 0::2] = torch.sin(y * div_term)
#     pe_y[:, :, 1::2] = torch.cos(y * div_term)
    
#     pe_z[:, :, 0::2] = torch.sin(z * div_term)
#     pe_z[:, :, 1::2] = torch.cos(z * div_term)
    
#     pe = torch.cat([pe_x, pe_y, pe_z], dim=2) # B, N, C*3
#     if cat_coords:
#         pe = torch.cat([pe, xyz], dim=2) # B, N, C*3+3
#     return pe
    
class SimplePool():
    def __init__(self, pool_size, version='pt', min_size=1):
        self.pool_size = pool_size
        self.version = version
        self.items = []
        self.min_size = min_size
        
        if not (version=='pt' or version=='np'):
            print('version = %s; please choose pt or np')
            assert(False) # please choose pt or np
            
    def __len__(self):
        return len(self.items)
    
    def mean(self, min_size=None):
        if min_size is None:
            pool_size_thresh = self.min_size
        elif min_size=='half':
            pool_size_thresh = self.pool_size/2
        else:
            pool_size_thresh = min_size
            
        if self.version=='np':
            if len(self.items) >= pool_size_thresh:
                return np.sum(self.items)/float(len(self.items))
            else:
                return np.nan
        if self.version=='pt':
            if len(self.items) >= pool_size_thresh:
                return torch.sum(self.items)/float(len(self.items))
            else:
                return torch.from_numpy(np.nan)
    
    def sample(self, with_replacement=True):
        idx = np.random.randint(len(self.items))
        if with_replacement:
            return self.items[idx]
        else:
            return self.items.pop(idx)
    
    def fetch(self, num=None):
        if self.version=='pt':
            item_array = torch.stack(self.items)
        elif self.version=='np':
            item_array = np.stack(self.items)
        if num is not None:
            # there better be some items
            assert(len(self.items) >= num)
                
            # if there are not that many elements just return however many there are
            if len(self.items) < num:
                return item_array
            else:
                idxs = np.random.randint(len(self.items), size=num)
                return item_array[idxs]
        else:
            return item_array
            
    def is_full(self):
        full = len(self.items)==self.pool_size
        return full
    
    def empty(self):
        self.items = []

    def have_min_size(self):
        return len(self.items) >= self.min_size
        
            
    def update(self, items):
        for item in items:
            if len(self.items) < self.pool_size:
                # the pool is not full, so let's add this in
                self.items.append(item)
            else:
                # the pool is full
                # pop from the front
                self.items.pop(0)
                # add to the back
                self.items.append(item)
        return self.items


class SimpleHeap():
    def __init__(self, pool_size, version='pt'):
        self.pool_size = pool_size
        self.version = version
        self.items = []
        self.vals = []
        
        if not (version=='pt' or version=='np'):
            print('version = %s; please choose pt or np')
            assert(False) # please choose pt or np
            
    def __len__(self):
        return len(self.items)
    
    def sample(self, random=True, with_replacement=True, semirandom=False):
        vals_arr = np.stack(self.vals)
        if random:
            ind = np.random.randint(len(self.items))
        else:
            if semirandom and len(vals_arr)>1:
                # choose from the harder half
                inds = np.argsort(vals_arr) # ascending
                inds = inds[len(vals_arr)//2:]
                ind = np.random.choice(inds)
            else:
                # find the most valuable element
                ind = np.argmax(vals_arr)

            
        if with_replacement:
            return self.items[ind]
        else:
            item = self.items.pop(ind)
            val = self.vals.pop(ind)
            return item
    
    def fetch(self, num=None):
        if self.version=='pt':
            item_array = torch.stack(self.items)
        elif self.version=='np':
            item_array = np.stack(self.items)
        if num is not None:
            # there better be some items
            assert(len(self.items) >= num)
                
            # if there are not that many elements just return however many there are
            if len(self.items) < num:
                return item_array
            else:
                idxs = np.random.randint(len(self.items), size=num)
                return item_array[idxs]
        else:
            return item_array
            
    def is_full(self):
        full = len(self.items)==self.pool_size
        return full
    
    def empty(self):
        self.items = []
            
    def update(self, vals, items):
        for val,item in zip(vals, items):
            if len(self.items) < self.pool_size:
                # the pool is not full, so let's add this in
                self.items.append(item)
                self.vals.append(val)
            else:
                # the pool is full
                # find our least-valuable element
                # and see if we should replace it
                vals_arr = np.stack(self.vals)
                ind = np.argmin(vals_arr)
                if vals_arr[ind] < val:
                    # pop the min
                    self.items.pop(ind)
                    self.vals.pop(ind)

                    # add to the back
                    self.items.append(item)
                    self.vals.append(val)
        return self.items
    

def farthest_point_sample(xyz, npoint, include_ends=False, deterministic=False):
    """
    Input:
        xyz: pointcloud data, [B, N, C], where C is probably 3
        npoint: number of samples
    Return:
        inds: sampled pointcloud index, [B, npoint]
    """
    device = xyz.device
    B, N, C = xyz.shape
    xyz = xyz.float()
    inds = torch.zeros(B, npoint, dtype=torch.long, device=device)
    distance = torch.ones((B, N), dtype=torch.float32, device=device) * 1e10
    if deterministic:
        farthest = torch.randint(0, 1, (B,), dtype=torch.long, device=device)
    else:
        farthest = torch.randint(0, N, (B,), dtype=torch.long, device=device)
    batch_indices = torch.arange(B, dtype=torch.long, device=device)
    for i in range(npoint):
        if include_ends:
            if i==0:
                farthest = 0
            elif i==1:
                farthest = N-1
        inds[:, i] = farthest
        centroid = xyz[batch_indices, farthest, :].view(B, 1, C)
        dist = torch.sum((xyz - centroid) ** 2, -1)
        mask = dist < distance
        distance[mask] = dist[mask]
        farthest = torch.max(distance, -1)[1]

        if npoint > N:
            # if we need more samples, make them random
            distance += torch.randn_like(distance)
    return inds

def farthest_point_sample_py(xyz, npoint, deterministic=False):
    N,C = xyz.shape
    inds = np.zeros(npoint, dtype=np.int32)
    distance = np.ones(N) * 1e10
    if deterministic:
        farthest = 0
    else:
        farthest = np.random.randint(0, N, dtype=np.int32)
    for i in range(npoint):
        inds[i] = farthest
        centroid = xyz[farthest, :].reshape(1,C)
        dist = np.sum((xyz - centroid) ** 2, -1)
        mask = dist < distance
        distance[mask] = dist[mask]
        farthest = np.argmax(distance, -1)
        if npoint > N:
            # if we need more samples, make them random
            distance += np.random.randn(*distance.shape)
    return inds
    
def balanced_ce_loss(pred, gt, pos_weight=0.5, valid=None, dim=None, return_both=False, use_halfmask=False, H=64, W=64):
    # # pred and gt are the same shape
    # for (a,b) in zip(pred.size(), gt.size()):
    #     if not a==b:
    #         print('mismatch: pred, gt', pred.shape, gt.shape)
    #     assert(a==b) # some shape mismatch!

    pred = pred.reshape(-1)
    gt = gt.reshape(-1)
    device = pred.device
    
    if valid is not None:
        valid = valid.reshape(-1)
        for (a,b) in zip(pred.size(), valid.size()):
            assert(a==b) # some shape mismatch!
    else:
        valid = torch.ones_like(gt)

    pos = (gt > 0.95).float()
    if use_halfmask:
        pos_wide = (gt >= 0.5).float()
        halfmask = (gt == 0.5).float()
    else:
        pos_wide = pos

    neg = (gt < 0.05).float()

    label = pos_wide*2.0 - 1.0
    a = -label * pred
    b = F.relu(a)
    loss = b + torch.log(torch.exp(-b)+torch.exp(a-b))

    if torch.sum(pos*valid)>0:
        pos_loss = loss[(pos*valid) > 0].mean()
    else:
        pos_loss = torch.tensor(0.0, requires_grad=True, device=device)
        
    if torch.sum(neg*valid)>0:
        neg_loss = loss[(neg*valid) > 0].mean()
    else:
        neg_loss = torch.tensor(0.0, requires_grad=True, device=device)
    balanced_loss = pos_weight*pos_loss + (1-pos_weight)*neg_loss
    return balanced_loss

    # pos_loss = utils.basic.reduce_masked_mean(loss, pos*valid, dim=dim)
    # neg_loss = utils.basic.reduce_masked_mean(loss, neg*valid, dim=dim)

    if use_halfmask:
        # here we will find the pixels which are already leaning positive,
        # and encourage them to be more positive
        B = loss.shape[0]
        loss_ = loss.reshape(B,-1)
        mask_ = halfmask.reshape(B,-1) * valid.reshape(B,-1)

        # to avoid the issue where spikes become spikier,
        # we will only apply this loss on batch els where we predicted zero positives
        pred_sig_ = torch.sigmoid(pred).reshape(B,-1)
        no_pred_ = torch.max(pred_sig_.round(), axis=1)[0] < 1 # B
        # and only on batch els where we have negatives available
        have_neg_ = torch.sum(neg, dim=1)>0 # B

        loss_ = loss_[no_pred_ & have_neg_] # N,H*W
        mask_ = mask_[no_pred_ & have_neg_] # N,H*W
        N = loss_.shape[0]

        if N > 0:
            # we want: 
            # in the neg pixels, 
            # set them to the max loss of the pos pixels,
            # so that they do not contribute to the min
            loss__ = loss_.reshape(-1)
            mask__ = mask_.reshape(-1)
            if torch.sum(mask__)>0:
                # print('loss_', loss_.shape, 'mask_', mask_.shape, 'loss__', loss__.shape, 'mask__', mask__.shape)
                mloss__ = loss__.detach()
                mloss__[mask__==0] = torch.max(loss__[mask__==1])
                mloss_ = mloss__.reshape(N,H*W)

                # now, in each batch el, take a tiny region around the argmin, so we can boost this region
                minloss_mask_ = torch.zeros_like(mloss_).scatter(1,mloss_.argmin(1,True),value=1)
                minloss_mask_ = utils.improc.dilate2d(minloss_mask_.view(N,1,H,W), times=3).reshape(N,H*W)

                loss__ = loss_.reshape(-1)
                minloss_mask__ = minloss_mask_.reshape(-1)
                half_loss = loss__[minloss_mask__>0].mean()

                # print('N', N, 'half_loss', half_loss)
                pos_loss = pos_loss + half_loss

        # if False:
        #     min_pos = 8

        #     # only apply the loss when we have some negatives available,
        #     # otherwise it's a whole "ignore" frame, which may mean
        #     # we are unsure if the target is even there
        #     if torch.sum(mask__==0) > 0: # negatives available
        #         # only apply the loss when the halfmask is larger area than
        #         # min_pos (the number of pixels we want to boost),
        #         # so that indexing will work 
        #         if torch.all(torch.sum(mask_==1, dim=1) >= min_pos): # topk indexing will work
        #             # in the pixels we will not use,
        #             # set them to the max of the pixels we may use,
        #             # so that they do not contribute to the min
        #             loss__[mask__==0] = torch.max(loss__[mask__==1])
        #             loss_ = loss__.reshape(B,-1)

        #             half_loss = torch.mean(torch.topk(loss_, min_pos, dim=1, largest=False)[0], dim=1) # B

        #             have_neg = (torch.sum(neg, dim=1)>0).float() # B
        #             pos_loss = pos_loss + half_loss*have_neg

                


            
        
        # half_loss = []
        # for b in range(B):
        #     loss_b = loss_[b]
        #     mask_b = mask_[b]
        #     if torch.sum(mask_b):
        #         inds = torch.nonzero(mask_b).reshape(-1)
        #         half_loss.append(torch.min(loss_b[inds]))
        # if len(half_loss):
        #     # # half_loss_ = half_loss.reshape(-1)
        #     # half_loss = torch.min(half_loss, dim=1)[0] # B
        #     # half_loss = torch.mean(torch.topk(half_loss, 4, dim=1, largest=False)[0], dim=1) # B
        #     pos_loss = pos_loss + torch.stack(half_loss).mean()

    if return_both:
        return pos_loss, neg_loss
    balanced_loss = pos_weight*pos_loss + (1-pos_weight)*neg_loss

    return balanced_loss

def dice_loss(pred, gt):
    # gt has ignores at 0.5
    # pred and gt are the same shape
    for (a,b) in zip(pred.size(), gt.size()):
        assert(a==b) # some shape mismatch!
    
    prob = pred.sigmoid()

    # flatten everything except batch
    prob = prob.flatten(1)
    gt = gt.flatten(1)
    
    pos = (gt > 0.95).float()
    neg = (gt < 0.05).float()
    valid = (pos+neg).float().clamp(0,1)
    
    numerator = 2 * (prob * pos * valid).sum(1)
    denominator = (prob*valid).sum(1) + (pos*valid).sum(1)
    loss = 1 - (numerator + 1) / (denominator + 1)
    return loss

def sigmoid_focal_loss(pred, gt, alpha=0.25, gamma=2):#, use_halfmask=False):
    # gt has ignores at 0.5
    # pred and gt are the same shape
    for (a,b) in zip(pred.size(), gt.size()):
        assert(a==b) # some shape mismatch!

    # flatten everything except batch
    pred = pred.flatten(1)
    gt = gt.flatten(1)
        
    pos = (gt > 0.95).float()
    neg = (gt < 0.05).float()
    # if use_halfmask:
    #     pos_wide = (gt >= 0.5).float()
    #     halfmask = (gt == 0.5).float()
    # else:
    #     pos_wide = pos
    valid = (pos+neg).float().clamp(0,1)
    
    prob = pred.sigmoid()
    ce_loss = F.binary_cross_entropy_with_logits(pred, pos, reduction="none")
    p_t = prob * pos + (1 - prob) * (1 - pos)
    loss = ce_loss * ((1 - p_t) ** gamma)

    if alpha >= 0:
        alpha_t = alpha * pos + (1 - alpha) * (1 - pos)
        loss = alpha_t * loss

    loss = (loss*valid).sum(1) / (1 + valid.sum(1))
    return loss 
    
# def dice_loss(inputs, targets, normalizer=1):
#     inputs = inputs.sigmoid()
#     inputs = inputs.flatten(1)
#     numerator = 2 * (inputs * targets).sum(1)
#     denominator = inputs.sum(-1) + targets.sum(-1)
#     loss = 1 - (numerator + 1) / (denominator + 1)
#     return loss.sum() / normalizer

# def sigmoid_focal_loss(inputs, targets, normalizer=1, alpha=0.25, gamma=2):
#     prob = inputs.sigmoid()
#     ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
#     p_t = prob * targets + (1 - prob) * (1 - targets)
#     loss = ce_loss * ((1 - p_t) ** gamma)

#     if alpha >= 0:
#         alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
#         loss = alpha_t * loss

#     return loss.mean(1).sum() / normalizer
                                        
def data_replace_with_nearest(xys, valids):
    # replace invalid xys with nearby ones
    invalid_idx = np.where(valids==0)[0]
    valid_idx = np.where(valids==1)[0]
    for idx in invalid_idx:
        nearest = valid_idx[np.argmin(np.abs(valid_idx - idx))]
        xys[idx] = xys[nearest]
    return xys

def data_get_traj_from_masks(masks):
    if masks.ndim==4:
        masks = masks[...,0]
    S, H, W = masks.shape
    masks = (masks > 0.1).astype(np.float32)
    fills = np.zeros((S))
    xy_means = np.zeros((S,2))
    xy_rands = np.zeros((S,2))
    valids = np.zeros((S))
    for si, mask in enumerate(masks):
        if np.sum(mask) > 0:
            ys, xs = np.where(mask)
            inds = np.random.permutation(len(xs))
            xs, ys = xs[inds], ys[inds]
            x0, x1 = np.min(xs), np.max(xs)+1
            y0, y1 = np.min(ys), np.max(ys)+1
            # if (x1-x0)>0 and (y1-y0)>0:
            xy_means[si] = np.array([xs.mean(), ys.mean()])
            xy_rands[si] = np.array([xs[0], ys[0]])
            valids[si] = 1
            crop = mask[y0:y1, x0:x1]
            fill = np.mean(crop)
            fills[si] = fill
        # print('fills', fills)
    return xy_means, xy_rands, valids, fills

def data_zoom(zoom, xys, visibs, rgbs, valids=None, masks=None, masks2=None, masks3=None, masks4=None):
    S, H, W, C = rgbs.shape
    S,N,D = xys.shape
    
    _, H, W, C = rgbs.shape
    assert(C==3)
    crop_W = int(W//zoom)
    crop_H = int(H//zoom)

    if np.random.rand() < 0.25: # follow-crop
        # start with xy traj
        # smooth_xys = xys.copy()
        smooth_xys = xys[:,np.random.randint(N)].reshape(S,1,2)
        # make it inbounds
        smooth_xys = np.clip(smooth_xys, [crop_W // 2, crop_H // 2], [W - crop_W // 2, H - crop_H // 2])
        
        # smooth it out, to remove info about the traj, and simulate camera motion
        for _ in range(S*3):
            for ii in range(S):
                if ii==0:
                    smooth_xys[ii] = (smooth_xys[ii] + smooth_xys[ii+1])/2.0
                elif ii==S-1:
                    smooth_xys[ii] = (smooth_xys[ii-1] + smooth_xys[ii])/2.0
                else:
                    smooth_xys[ii] = (smooth_xys[ii-1] + smooth_xys[ii] + smooth_xys[ii+1])/3.0
    else: # static (no-hint) crop
        # zero-vel on random available coordinate

        if valids is not None:
            visval = visibs*valids # S,N
            visval = np.sum(visval, axis=1) # S
        else:
            visval = np.sum(visibs, axis=1) # S
            
        anchor_inds = np.nonzero(visval >= np.mean(visval))[0]
        ind = anchor_inds[np.random.randint(len(anchor_inds))]
        # print('ind', ind)
        smooth_xys = xys[ind:ind+1].repeat(S,axis=0)
        smooth_xys = smooth_xys.mean(axis=1, keepdims=True)
        # xmid = np.random.randint(crop_W//2, W-crop_W//2)
        # ymid = np.random.randint(crop_H//2, H-crop_H//2)
        # smooth_xys = np.stack([xmid, ymid], axis=-1).reshape(1,1,2).repeat(S, axis=0) # S,1,2
        smooth_xys = np.clip(smooth_xys, [crop_W // 2, crop_H // 2], [W - crop_W // 2, H - crop_H // 2])
                
    if np.random.rand() < 0.5:
        # add a random alternate trajectory, to help push us off center
        alt_xys = np.random.randint(-crop_H//8, crop_H//8, (S,1,2))
        for _ in range(4): # smooth out
            for ii in range(S):
                if ii==0:
                    alt_xys[ii] = (alt_xys[ii] + alt_xys[ii+1])/2.0
                elif ii==S-1:
                    alt_xys[ii] = (alt_xys[ii-1] + alt_xys[ii])/2.0
                else:
                    alt_xys[ii] = (alt_xys[ii-1] + alt_xys[ii] + alt_xys[ii+1])/3.0
        smooth_xys = smooth_xys + alt_xys
        
    smooth_xys = np.clip(smooth_xys, [crop_W // 2, crop_H // 2], [W - crop_W // 2, H - crop_H // 2])

    rgbs_crop = []
    if masks is not None:
        masks_crop = []
    if masks2 is not None:
        masks2_crop = []
    if masks3 is not None:
        masks3_crop = []
    if masks4 is not None:
        masks4_crop = []

    offsets = []
    for si in range(S):
        xy_mid = smooth_xys[si].squeeze(0).round().astype(np.int32) # 2

        xmid, ymid = xy_mid[0], xy_mid[1]

        x0, x1 = np.clip(xmid-crop_W//2, 0, W), np.clip(xmid+crop_W//2, 0, W)
        y0, y1 = np.clip(ymid-crop_H//2, 0, H), np.clip(ymid+crop_H//2, 0, H)
        offset = np.array([x0, y0]).reshape(1,2)

        rgbs_crop.append(rgbs[si,y0:y1,x0:x1])
        if masks is not None:
            masks_crop.append(masks[si,y0:y1,x0:x1])
        if masks2 is not None:
            masks2_crop.append(masks2[si,y0:y1,x0:x1])
        if masks3 is not None:
            masks3_crop.append(masks3[si,y0:y1,x0:x1])
        if masks4 is not None:
            masks4_crop.append(masks4[si,y0:y1,x0:x1])
        xys[si] -= offset

        offsets.append(offset)

    rgbs = np.stack(rgbs_crop, axis=0)
    if masks is not None:
        masks = np.stack(masks_crop, axis=0)
    if masks2 is not None:
        masks2 = np.stack(masks2_crop, axis=0)
    if masks3 is not None:
        masks3 = np.stack(masks3_crop, axis=0)
    if masks4 is not None:
        masks4 = np.stack(masks4_crop, axis=0)

    # update visibility annotations
    for si in range(S):
        oob_inds = np.logical_or(
            np.logical_or(xys[si,:,0] < 0, xys[si,:,0] > crop_W-1),
            np.logical_or(xys[si,:,1] < 0, xys[si,:,1] > crop_H-1))
        visibs[si,oob_inds] = 0
    
    # if masks4 is not None:
    #     return xys, visibs, valids, rgbs, masks, masks2, masks3, masks4
    # if masks3 is not None:
    #     return xys, visibs, valids, rgbs, masks, masks2, masks3
    # if masks2 is not None:
    #     return xys, visibs, valids, rgbs, masks, masks2
    # if masks is not None:
    #     return xys, visibs, valids, rgbs, masks
    # else:
    # return xys, visibs, valids, rgbs
    if valids is not None:
        return xys, visibs, rgbs, valids
    else:
        return xys, visibs, rgbs


def data_zoom_bbox(zoom, bboxes, visibs, rgbs):#, valids=None):
    S, H, W, C = rgbs.shape

    _, H, W, C = rgbs.shape
    assert(C==3)
    crop_W = int(W//zoom)
    crop_H = int(H//zoom)

    xys = bboxes[:,0:2]*0.5 + bboxes[:,2:4]*0.5

    if np.random.rand() < 0.25: # follow-crop
        # start with xy traj
        smooth_xys = xys.copy()
        # make it inbounds
        smooth_xys = np.clip(smooth_xys, [crop_W // 2, crop_H // 2], [W - crop_W // 2, H - crop_H // 2])
        # smooth it out, to remove info about the traj, and simulate camera motion
        for _ in range(S*3):
            for ii in range(1,S-1):
                smooth_xys[ii] = (smooth_xys[ii-1] + smooth_xys[ii] + smooth_xys[ii+1])/3.0
    else: # static (no-hint) crop
        # zero-vel on random available coordinate
        anchor_inds = np.nonzero(visibs.reshape(-1)>0.5)[0]
        ind = anchor_inds[np.random.randint(len(anchor_inds))]
        smooth_xys = xys[ind:ind+1].repeat(S,axis=0)
        # xmid = np.random.randint(crop_W//2, W-crop_W//2)
        # ymid = np.random.randint(crop_H//2, H-crop_H//2)
        # smooth_xys = np.stack([xmid, ymid], axis=-1).reshape(1,1,2).repeat(S, axis=0) # S,1,2
        smooth_xys = np.clip(smooth_xys, [crop_W // 2, crop_H // 2], [W - crop_W // 2, H - crop_H // 2])
    # print('xys', xys)
    # print('smooth_xys', smooth_xys)
                
    if np.random.rand() < 0.5:
        # add a random alternate trajectory, to help push us off center
        alt_xys = np.random.randint(-crop_H//8, crop_H//8, (S,2))
        for _ in range(3):
            for ii in range(1,S-1):
                alt_xys[ii] = (alt_xys[ii-1] + alt_xys[ii] + alt_xys[ii+1])/3.0
        smooth_xys = smooth_xys + alt_xys
        
    smooth_xys = np.clip(smooth_xys, [crop_W // 2, crop_H // 2], [W - crop_W // 2, H - crop_H // 2])
    
    rgbs_crop = []

    offsets = []
    for si in range(S):
        xy_mid = smooth_xys[si].round().astype(np.int32)
        xmid, ymid = xy_mid[0], xy_mid[1]

        x0, x1 = np.clip(xmid-crop_W//2, 0, W), np.clip(xmid+crop_W//2, 0, W)
        y0, y1 = np.clip(ymid-crop_H//2, 0, H), np.clip(ymid+crop_H//2, 0, H)
        offset = np.array([x0, y0]).reshape(2)

        rgbs_crop.append(rgbs[si,y0:y1,x0:x1])
        xys[si] -= offset
        bboxes[si,0:2] -= offset
        bboxes[si,2:4] -= offset
        
        offsets.append(offset)

    rgbs = np.stack(rgbs_crop, axis=0)

    # update visibility annotations
    for si in range(S):
        # avoid 1px edge
        oob_inds = np.logical_or(
            np.logical_or(xys[si,0] < 1, xys[si,0] > W-2),
            np.logical_or(xys[si,1] < 1, xys[si,1] > H-2))
        visibs[si,oob_inds] = 0

    # clamp to image bounds
    xys0 = np.minimum(np.maximum(bboxes[:,0:2], np.zeros((2,), dtype=int)), np.array([W, H]) - 1) # S,2
    xys1 = np.minimum(np.maximum(bboxes[:,2:4], np.zeros((2,), dtype=int)), np.array([W, H]) - 1) # S,2
    bboxes = np.concatenate([xys0, xys1], axis=1)
    return bboxes, visibs, rgbs 
        

def data_pad_if_necessary(rgbs, masks, masks2=None):
    S,H,W,C = rgbs.shape
    
    mask_areas = (masks > 0).reshape(S,-1).sum(axis=1)
    mask_areas_norm = mask_areas / np.max(mask_areas)
    visibs = mask_areas_norm
    
    bboxes = np.stack([mask2bbox(mask) for mask in masks])
    whs = bboxes[:,2:4] - bboxes[:,0:2]
    whs = whs[visibs > 0.5]
    # print('mean wh', np.mean(whs[:,0]), np.mean(whs[:,1]))
    if np.mean(whs[:,0]) >= W/2:
        # print('padding w')
        pad = ((0,0),(0,0),(W//4,W//4),(0,0))
        rgbs = np.pad(rgbs, pad, mode="constant")
        masks = np.pad(masks, pad[:3], mode="constant")
        if masks2 is not None:
            masks2 = np.pad(masks2, pad[:3], mode="constant")
    # print('rgbs', rgbs.shape)
    # print('masks', masks.shape)
    if np.mean(whs[:,1]) >= H/2:
        # print('padding h')
        pad = ((0,0),(H//4,H//4),(0,0),(0,0))
        rgbs = np.pad(rgbs, pad, mode="constant")
        masks = np.pad(masks, pad[:3], mode="constant")
        if masks2 is not None:
            masks2 = np.pad(masks2, pad[:3], mode="constant", constant_values=0.5)

    if masks2 is not None:
        return rgbs, masks, masks2
    return rgbs, masks

def data_pad_if_necessary_b(rgbs, bboxes, visibs):
    S,H,W,C = rgbs.shape
    whs = bboxes[:,2:4] - bboxes[:,0:2]
    whs = whs[visibs > 0.5]
    if np.mean(whs[:,0]) >= W/2:
        pad = ((0,0),(0,0),(W//4,W//4),(0,0))
        rgbs = np.pad(rgbs, pad, mode="constant")
        bboxes[:,0] += W//4
        bboxes[:,2] += W//4
    if np.mean(whs[:,1]) >= H/2:
        pad = ((0,0),(H//4,H//4),(0,0),(0,0))
        rgbs = np.pad(rgbs, pad, mode="constant")
        bboxes[:,1] += H//4
        bboxes[:,3] += H//4
    return rgbs, bboxes

def posenc(x, min_deg, max_deg):
    """Cat x with a positional encoding of x with scales 2^[min_deg, max_deg-1].
    Instead of computing [sin(x), cos(x)], we use the trig identity
    cos(x) = sin(x + pi/2) and do one vectorized call to sin([x, x+pi/2]).
    Args:
      x: torch.Tensor, variables to be encoded. Note that x should be in [-pi, pi].
      min_deg: int, the minimum (inclusive) degree of the encoding.
      max_deg: int, the maximum (exclusive) degree of the encoding.
      legacy_posenc_order: bool, keep the same ordering as the original tf code.
    Returns:
      encoded: torch.Tensor, encoded variables.
    """
    if min_deg == max_deg:
        return x
    scales = torch.tensor(
        [2**i for i in range(min_deg, max_deg)], dtype=x.dtype, device=x.device
    )

    xb = (x[..., None, :] * scales[:, None]).reshape(list(x.shape[:-1]) + [-1])
    four_feat = torch.sin(torch.cat([xb, xb + 0.5 * torch.pi], dim=-1))
    return torch.cat([x] + [four_feat], dim=-1)