Spaces:
Sleeping
Sleeping
File size: 7,020 Bytes
6d95ea1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import torch
import cv2
import torch.nn.functional as F
import numpy as np
def prep_frame_for_dino(img, scale_size=[192]):
"""
read a single frame & preprocess
"""
ori_h, ori_w, _ = img.shape
if len(scale_size) == 1:
if(ori_h > ori_w):
tw = scale_size[0]
th = (tw * ori_h) / ori_w
th = int((th // 64) * 64)
else:
th = scale_size[0]
tw = (th * ori_w) / ori_h
tw = int((tw // 64) * 64)
else:
th, tw = scale_size
img = cv2.resize(img, (tw, th))
img = img.astype(np.float32)
img = img / 255.0
img = img[:, :, ::-1]
img = np.transpose(img.copy(), (2, 0, 1))
img = torch.from_numpy(img).float()
def color_normalize(x, mean=[0.485, 0.456, 0.406], std=[0.228, 0.224, 0.225]):
for t, m, s in zip(x, mean, std):
t.sub_(m)
t.div_(s)
return x
img = color_normalize(img)
return img, ori_h, ori_w
def get_feats_from_dino(model, frame):
# batch version of the other func
B = frame.shape[0]
patch_size = model.patch_embed.patch_size
h, w = int(frame.shape[2] / patch_size), int(frame.shape[3] / patch_size)
out = model.get_intermediate_layers(frame.cuda(), n=1)[0] # B, 1+h*w, dim
dim = out.shape[-1]
out = out[:, 1:, :] # discard the [CLS] token
outmap = out.permute(0, 2, 1).reshape(B, dim, h, w)
return out, outmap, h, w
def restrict_neighborhood(h, w):
size_mask_neighborhood = 12
# We restrict the set of source nodes considered to a spatial neighborhood of the query node (i.e. ``local attention'')
mask = torch.zeros(h, w, h, w)
for i in range(h):
for j in range(w):
for p in range(2 * size_mask_neighborhood + 1):
for q in range(2 * size_mask_neighborhood + 1):
if i - size_mask_neighborhood + p < 0 or i - size_mask_neighborhood + p >= h:
continue
if j - size_mask_neighborhood + q < 0 or j - size_mask_neighborhood + q >= w:
continue
mask[i, j, i - size_mask_neighborhood + p, j - size_mask_neighborhood + q] = 1
mask = mask.reshape(h * w, h * w)
return mask.cuda(non_blocking=True)
def label_propagation(h, w, feat_tar, list_frame_feats, list_segs, mask_neighborhood=None):
ncontext = len(list_frame_feats)
feat_sources = torch.stack(list_frame_feats) # nmb_context x dim x h*w
feat_tar = F.normalize(feat_tar, dim=1, p=2)
feat_sources = F.normalize(feat_sources, dim=1, p=2)
# print('feat_tar', feat_tar.shape)
# print('feat_sources', feat_sources.shape)
feat_tar = feat_tar.unsqueeze(0).repeat(ncontext, 1, 1)
aff = torch.exp(torch.bmm(feat_tar, feat_sources) / 0.1)
size_mask_neighborhood = 12
if size_mask_neighborhood > 0:
if mask_neighborhood is None:
mask_neighborhood = restrict_neighborhood(h, w)
mask_neighborhood = mask_neighborhood.unsqueeze(0).repeat(ncontext, 1, 1)
aff *= mask_neighborhood
aff = aff.transpose(2, 1).reshape(-1, h*w) # nmb_context*h*w (source: keys) x h*w (tar: queries)
topk = 5
tk_val, _ = torch.topk(aff, dim=0, k=topk)
tk_val_min, _ = torch.min(tk_val, dim=0)
aff[aff < tk_val_min] = 0
aff = aff / torch.sum(aff, keepdim=True, axis=0)
list_segs = [s.cuda() for s in list_segs]
segs = torch.cat(list_segs)
nmb_context, C, h, w = segs.shape
segs = segs.reshape(nmb_context, C, -1).transpose(2, 1).reshape(-1, C).T # C x nmb_context*h*w
seg_tar = torch.mm(segs, aff)
seg_tar = seg_tar.reshape(1, C, h, w)
return seg_tar, mask_neighborhood
def norm_mask(mask):
c, h, w = mask.size()
for cnt in range(c):
mask_cnt = mask[cnt,:,:]
if(mask_cnt.max() > 0):
mask_cnt = (mask_cnt - mask_cnt.min())
mask_cnt = mask_cnt/mask_cnt.max()
mask[cnt,:,:] = mask_cnt
return mask
def get_dino_output(dino, rgbs, trajs_g, vis_g):
B, S, C, H, W = rgbs.shape
B1, S1, N, D = trajs_g.shape
assert(B1==B)
assert(S1==S)
assert(D==2)
assert(B==1)
xy0 = trajs_g[:,0] # B, N, 2
# The queue stores the n preceeding frames
import queue
import copy
n_last_frames = 7
que = queue.Queue(n_last_frames)
# run dino
prep_rgbs = []
for s in range(S):
prep_rgb, ori_h, ori_w = prep_frame_for_dino(rgbs[0, s].permute(1,2,0).detach().cpu().numpy(), scale_size=[H])
prep_rgbs.append(prep_rgb)
prep_rgbs = torch.stack(prep_rgbs, dim=0) # S, 3, H, W
with torch.no_grad():
bs = 8
idx = 0
featmaps = []
while idx < S:
end_id = min(S, idx+bs)
_, featmaps_cur, h, w = get_feats_from_dino(dino, prep_rgbs[idx:end_id]) # S, C, h, w
idx = end_id
featmaps.append(featmaps_cur)
featmaps = torch.cat(featmaps, dim=0)
C = featmaps.shape[1]
featmaps = featmaps.unsqueeze(0) # 1, S, C, h, w
# featmaps = F.normalize(featmaps, dim=2, p=2)
xy0 = trajs_g[:, 0, :] # B, N, 2
patch_size = dino.patch_embed.patch_size
first_seg = torch.zeros((1, N, H//patch_size, W//patch_size))
for n in range(N):
first_seg[0, n, (xy0[0, n, 1]/patch_size).long(), (xy0[0, n, 0]/patch_size).long()] = 1
frame1_feat = featmaps[0, 0].reshape(C, h*w) # dim x h*w
mask_neighborhood = None
accs = []
trajs_e = torch.zeros_like(trajs_g)
trajs_e[0,0] = trajs_g[0,0]
for cnt in range(1, S):
used_frame_feats = [frame1_feat] + [pair[0] for pair in list(que.queue)]
used_segs = [first_seg] + [pair[1] for pair in list(que.queue)]
feat_tar = featmaps[0, cnt].reshape(C, h*w)
frame_tar_avg, mask_neighborhood = label_propagation(h, w, feat_tar.T, used_frame_feats, used_segs, mask_neighborhood)
# pop out oldest frame if neccessary
if que.qsize() == n_last_frames:
que.get()
# push current results into queue
seg = copy.deepcopy(frame_tar_avg)
que.put([feat_tar, seg])
# upsampling & argmax
frame_tar_avg = F.interpolate(frame_tar_avg, scale_factor=patch_size, mode='bilinear', align_corners=False, recompute_scale_factor=False)[0]
frame_tar_avg = norm_mask(frame_tar_avg)
_, frame_tar_seg = torch.max(frame_tar_avg, dim=0)
for n in range(N):
vis = vis_g[0,cnt,n]
if len(torch.nonzero(frame_tar_avg[n])) > 0:
# weighted average
nz = torch.nonzero(frame_tar_avg[n])
coord_e = torch.sum(frame_tar_avg[n][nz[:,0], nz[:,1]].reshape(-1,1) * nz.float(), 0) / frame_tar_avg[n][nz[:,0], nz[:,1]].sum() # 2
coord_e = coord_e[[1,0]]
else:
# stay where it was
coord_e = trajs_e[0,cnt-1,n]
trajs_e[0, cnt, n] = coord_e
return trajs_e
|