File size: 7,020 Bytes
6d95ea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import torch
import cv2
import torch.nn.functional as F
import numpy as np

def prep_frame_for_dino(img, scale_size=[192]):
    """
    read a single frame & preprocess
    """
    ori_h, ori_w, _ = img.shape
    if len(scale_size) == 1:
        if(ori_h > ori_w):
            tw = scale_size[0]
            th = (tw * ori_h) / ori_w
            th = int((th // 64) * 64)
        else:
            th = scale_size[0]
            tw = (th * ori_w) / ori_h
            tw = int((tw // 64) * 64)
    else:
        th, tw = scale_size
    img = cv2.resize(img, (tw, th))
    img = img.astype(np.float32)
    img = img / 255.0
    img = img[:, :, ::-1]
    img = np.transpose(img.copy(), (2, 0, 1))
    img = torch.from_numpy(img).float()

    def color_normalize(x, mean=[0.485, 0.456, 0.406], std=[0.228, 0.224, 0.225]):
        for t, m, s in zip(x, mean, std):
            t.sub_(m)
            t.div_(s)
        return x
    
    img = color_normalize(img)
    return img, ori_h, ori_w

def get_feats_from_dino(model, frame):
    # batch version of the other func
    B = frame.shape[0]
    patch_size = model.patch_embed.patch_size
    h, w = int(frame.shape[2] / patch_size), int(frame.shape[3] / patch_size)
    out = model.get_intermediate_layers(frame.cuda(), n=1)[0] # B, 1+h*w, dim
    dim = out.shape[-1]
    out = out[:, 1:, :]  # discard the [CLS] token
    outmap = out.permute(0, 2, 1).reshape(B, dim, h, w)
    return out, outmap, h, w

def restrict_neighborhood(h, w):
    size_mask_neighborhood = 12
    # We restrict the set of source nodes considered to a spatial neighborhood of the query node (i.e. ``local attention'')
    mask = torch.zeros(h, w, h, w)
    for i in range(h):
        for j in range(w):
            for p in range(2 * size_mask_neighborhood + 1):
                for q in range(2 * size_mask_neighborhood + 1):
                    if i - size_mask_neighborhood + p < 0 or i - size_mask_neighborhood + p >= h:
                        continue
                    if j - size_mask_neighborhood + q < 0 or j - size_mask_neighborhood + q >= w:
                        continue
                    mask[i, j, i - size_mask_neighborhood + p, j - size_mask_neighborhood + q] = 1

    mask = mask.reshape(h * w, h * w)
    return mask.cuda(non_blocking=True)

def label_propagation(h, w, feat_tar, list_frame_feats, list_segs, mask_neighborhood=None):
    ncontext = len(list_frame_feats)
    feat_sources = torch.stack(list_frame_feats) # nmb_context x dim x h*w

    feat_tar = F.normalize(feat_tar, dim=1, p=2)
    feat_sources = F.normalize(feat_sources, dim=1, p=2)

    # print('feat_tar', feat_tar.shape)
    # print('feat_sources', feat_sources.shape)

    feat_tar = feat_tar.unsqueeze(0).repeat(ncontext, 1, 1)
    aff = torch.exp(torch.bmm(feat_tar, feat_sources) / 0.1)

    size_mask_neighborhood = 12
    if size_mask_neighborhood > 0:
        if mask_neighborhood is None:
            mask_neighborhood = restrict_neighborhood(h, w)
            mask_neighborhood = mask_neighborhood.unsqueeze(0).repeat(ncontext, 1, 1)
        aff *= mask_neighborhood

    aff = aff.transpose(2, 1).reshape(-1, h*w) # nmb_context*h*w (source: keys) x h*w (tar: queries)
    topk = 5
    tk_val, _ = torch.topk(aff, dim=0, k=topk)
    tk_val_min, _ = torch.min(tk_val, dim=0)
    aff[aff < tk_val_min] = 0

    aff = aff / torch.sum(aff, keepdim=True, axis=0)

    list_segs = [s.cuda() for s in list_segs]
    segs = torch.cat(list_segs)
    nmb_context, C, h, w = segs.shape
    segs = segs.reshape(nmb_context, C, -1).transpose(2, 1).reshape(-1, C).T # C x nmb_context*h*w
    seg_tar = torch.mm(segs, aff)
    seg_tar = seg_tar.reshape(1, C, h, w)
    
    return seg_tar, mask_neighborhood

def norm_mask(mask):
    c, h, w = mask.size()
    for cnt in range(c):
        mask_cnt = mask[cnt,:,:]
        if(mask_cnt.max() > 0):
            mask_cnt = (mask_cnt - mask_cnt.min())
            mask_cnt = mask_cnt/mask_cnt.max()
            mask[cnt,:,:] = mask_cnt
    return mask


def get_dino_output(dino, rgbs, trajs_g, vis_g):
    B, S, C, H, W = rgbs.shape

    B1, S1, N, D = trajs_g.shape
    assert(B1==B)
    assert(S1==S)
    assert(D==2)
    
    assert(B==1)
    xy0 = trajs_g[:,0] # B, N, 2

    # The queue stores the n preceeding frames
    import queue
    import copy
    n_last_frames = 7
    que = queue.Queue(n_last_frames)

    # run dino
    prep_rgbs = []
    for s in range(S):
        prep_rgb, ori_h, ori_w = prep_frame_for_dino(rgbs[0, s].permute(1,2,0).detach().cpu().numpy(), scale_size=[H])
        prep_rgbs.append(prep_rgb)
    prep_rgbs = torch.stack(prep_rgbs, dim=0) # S, 3, H, W
    with torch.no_grad():
        bs = 8
        idx = 0 
        featmaps = []
        while idx < S:
            end_id = min(S, idx+bs)
            _, featmaps_cur, h, w = get_feats_from_dino(dino, prep_rgbs[idx:end_id]) # S, C, h, w
            idx = end_id
            featmaps.append(featmaps_cur)
        featmaps = torch.cat(featmaps, dim=0)
    C = featmaps.shape[1]
    featmaps = featmaps.unsqueeze(0) # 1, S, C, h, w
    # featmaps = F.normalize(featmaps, dim=2, p=2)

    xy0 = trajs_g[:, 0, :] # B, N, 2
    patch_size = dino.patch_embed.patch_size
    first_seg = torch.zeros((1, N, H//patch_size, W//patch_size))
    for n in range(N):
        first_seg[0, n, (xy0[0, n, 1]/patch_size).long(), (xy0[0, n, 0]/patch_size).long()] = 1

    frame1_feat = featmaps[0, 0].reshape(C, h*w) # dim x h*w
    mask_neighborhood = None
    accs = []
    trajs_e = torch.zeros_like(trajs_g)
    trajs_e[0,0] = trajs_g[0,0]
    for cnt in range(1, S):
        used_frame_feats = [frame1_feat] + [pair[0] for pair in list(que.queue)]
        used_segs = [first_seg] + [pair[1] for pair in list(que.queue)]

        feat_tar = featmaps[0, cnt].reshape(C, h*w)

        frame_tar_avg, mask_neighborhood = label_propagation(h, w, feat_tar.T, used_frame_feats, used_segs, mask_neighborhood)

        # pop out oldest frame if neccessary
        if que.qsize() == n_last_frames:
            que.get()
        # push current results into queue
        seg = copy.deepcopy(frame_tar_avg)
        que.put([feat_tar, seg])

        # upsampling & argmax
        frame_tar_avg = F.interpolate(frame_tar_avg, scale_factor=patch_size, mode='bilinear', align_corners=False, recompute_scale_factor=False)[0]
        frame_tar_avg = norm_mask(frame_tar_avg)
        _, frame_tar_seg = torch.max(frame_tar_avg, dim=0)

        for n in range(N):
            vis = vis_g[0,cnt,n]
            if len(torch.nonzero(frame_tar_avg[n])) > 0:
                # weighted average
                nz = torch.nonzero(frame_tar_avg[n])
                coord_e = torch.sum(frame_tar_avg[n][nz[:,0], nz[:,1]].reshape(-1,1) * nz.float(), 0) / frame_tar_avg[n][nz[:,0], nz[:,1]].sum() # 2
                coord_e = coord_e[[1,0]]
            else:
                # stay where it was
                coord_e = trajs_e[0,cnt-1,n]
                
            trajs_e[0, cnt, n] = coord_e
    return trajs_e