File size: 7,495 Bytes
de071e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
import os
from datasets import load_dataset
from tqdm import tqdm
import math
import matplotlib.pyplot as plt
import csv
from utils import interpolate_models
import time
import copy
import argparse
import glob


block_size = 512


def group_texts(examples):
    # Concatenate all texts.
    concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
    total_length = len(concatenated_examples[list(examples.keys())[0]])
    # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
    # customize this part to your needs.
    total_length = (total_length // block_size) * block_size
    # Split by chunks of max_len.
    result = {
        k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
        for k, t in concatenated_examples.items()
    }
    result["labels"] = result["input_ids"].copy()
    return result


def main(args):
    start_time = time.time()
    # Automatically detect CUDA device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")
    os.environ["WANDB_MODE"] = "disabled"

    # Load models and tokenizer
    os.environ["TOKENIZERS_PARALLELISM"] = "false"
    model_list = [
        "meta-llama/Llama-2-7b-hf",
        "codellama/CodeLlama-7b-hf",
        "lmsys/vicuna-7b-v1.5",
        "EleutherAI/llemma_7b",
        "LLM360/Amber",
    ]
    model_pairs = [
        (0, 2),  # LLama2, Vicuna-1.5
        (0, 1),  # LLama2, CodeLlama
        (0, 3),  # LLama2, Lemma
        (1, 3),  # CodeLlama, Lemma
        (0, 4),  # LLama2, Amber
    ]
    models = [
        AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
        for model_name in model_list
    ]
    tokenizer = AutoTokenizer.from_pretrained(models[0].config._name_or_path)
    tokenizer.pad_token = tokenizer.eos_token

    # Scan the directory for JSON files based on the test name argument
    columns_ignored = [
        "text",
        "added",
        "id",
        "lang",
        "metadata",
        "source",
        "timestamp",
        "subdomain",
    ]
    json_dir = f"/juice4/scr4/nlp/model-tracing/dolma_program_languages/json_files_{args.test_name}"
    json_files = glob.glob(f"{json_dir}/*.json")
    save_dir = f"/juice4/scr4/nlp/model-tracing/dolma_program_languages/results_{args.test_name}"
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)

    for json_file in json_files:
        print(f"Processing {json_file}")

        # Prepare dataset
        eval_dataset = load_dataset("json", data_files=json_file)

        def tokenize_function(examples):
            return tokenizer(examples["text"])

        tokenized_datasets = eval_dataset.map(
            tokenize_function, batched=True, num_proc=4, remove_columns=columns_ignored
        )
        lm_datasets = tokenized_datasets.map(
            group_texts,
            batched=True,
            batch_size=1,
            num_proc=1,
        )

        # Prepare for evaluation. Batch size is optimized for ~7B model
        training_args = TrainingArguments(
            output_dir="./results",
            per_device_eval_batch_size=3,
            do_eval=True,
            report_to=None,
            dataloader_num_workers=4,
            use_cpu=True,
        )
        alphas = [0.0, 0.3, 0.5, 0.7, 1.0]
        model = copy.deepcopy(models[0])
        trainer = Trainer(model=model, args=training_args, eval_dataset=lm_datasets)
        print("create data loader")
        eval_dataloader = trainer.get_test_dataloader(lm_datasets["train"])

        for idx_a, idx_b in tqdm(model_pairs, desc="Model Interpolation"):
            model_a = models[idx_a]
            model_b = models[idx_b]
            perplexities = []
            model_a_name = model_a.config._name_or_path.split("/")[-1]
            model_b_name = model_b.config._name_or_path.split("/")[-1]

            for alpha in tqdm(
                alphas, desc=f" \n Alpha Perplexities for {model_a_name} and {model_b_name}"
            ):
                interpolated_model = interpolate_models(model_a, model_b, alpha)
                # cast to bfloat16 before GPU
                interpolated_model = interpolated_model.half().to(device)

                start_time = time.time()
                losses = []

                for batch in tqdm(eval_dataloader, desc=f"\n Evaluating {alpha}"):
                    # HF Trainer finds GPU by default
                    input_ids = batch["input_ids"].to(device)
                    attention_mask = batch["attention_mask"].to(device)
                    labels = batch["labels"].to(device)
                    outputs = interpolated_model(
                        input_ids=input_ids,
                        attention_mask=attention_mask,
                        labels=labels,
                    )
                    loss = outputs.loss
                    losses.append(loss.item())

                loss_mean = sum(losses) / len(losses)
                print(f"Loss mean: {loss_mean}")
                end_time = time.time()
                execution_time = end_time - start_time
                print(f"Execution time base: {execution_time} seconds")

                perplexity = math.exp(loss_mean)
                perplexities.append(perplexity)

                # Move the model back to CPU
                interpolated_model.to("cpu")

                # Clear the GPU cache
                del interpolated_model, input_ids, attention_mask, labels, outputs, loss
                torch.cuda.empty_cache()

            # Save perplexities and model names to CSV
            json_filename = os.path.splitext(os.path.basename(json_file))[0]
            csv_filename = f"perplexities_{json_filename}.csv"
            csv_full_path = f"{save_dir}/{csv_filename}"
            csv_header = ["Model Pair"] + [f"Alpha {alpha}" for alpha in alphas]
            if not os.path.exists(csv_full_path):
                with open(csv_full_path, "w", newline="") as csvfile:
                    writer = csv.writer(csvfile)
                    writer.writerow(csv_header)

            with open(csv_full_path, "a", newline="") as csvfile:
                writer = csv.writer(csvfile)
                model_pair = f"{model_a_name} vs {model_b_name}"
                row = [model_pair] + perplexities
                writer.writerow(row)

            # Create the plot
            plt.figure(figsize=(8, 6))
            plt.plot(alphas, perplexities)
            plt.xlabel("Alpha")
            plt.ylabel("Perplexity")
            plt.title(f"{model_a_name} (Left) vs {model_b_name} (Right)")

            # Save the plot as a PNG file
            plot_filename = (
                f"alpha_vs_perplexity_{model_a_name}_vs_{model_b_name}_{json_filename}.png"
            )
            plot_full_path = f"{save_dir}/{plot_filename}"
            plt.savefig(plot_full_path, dpi=300, bbox_inches="tight")
            plt.close()

    end_time = time.time()
    execution_time = end_time - start_time
    print(f"Total execution time: {execution_time} seconds")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Model Interpolation")
    parser.add_argument(
        "--test_name", type=str, default="js", help="Test name (e.g., cpp, python, js)"
    )
    args = parser.parse_args()
    main(args)