File size: 10,325 Bytes
de071e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
import itertools
import os
from datasets import load_dataset
from tqdm import tqdm
import math
import matplotlib.pyplot as plt
import csv
from utils import interpolate_models
import time
import argparse
import glob
import gc

block_size = 2048
"""
Script for running ablation of tests on m2d2 dataset rather
than simply wikitext
"""


def group_texts(examples):
    # Concatenate all texts.
    concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
    total_length = len(concatenated_examples[list(examples.keys())[0]])
    # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
    # customize this part to your needs.
    total_length = (total_length // block_size) * block_size
    # Split by chunks of max_len.
    result = {
        k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
        for k, t in concatenated_examples.items()
    }
    result["labels"] = result["input_ids"].copy()
    return result


def load_model(model_name):
    return AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)


def main(args):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")
    os.environ["WANDB_MODE"] = "disabled"
    os.environ["TOKENIZERS_PARALLELISM"] = "false"

    model_arch = args.model_arch
    if model_arch == "llama":
        model_list = [
            "meta-llama/Llama-2-7b-hf",
            "meta-llama/Llama-2-7b-chat-hf",
            "meta-llama/CodeLlama-7b-Python-hf",
            "meta-llama/CodeLlama-7b-Instruct-hf",
            "codellama/CodeLlama-7b-hf",
            "lmsys/vicuna-7b-v1.5",
            "lmsys/vicuna-7b-v1.1",
            "EleutherAI/llemma_7b",
            "LLM360/Amber",
        ]
    elif model_arch == "olmo":
        model_list = [
            "/scr/ahmedah/olmo/step1000_4B_tokens/seed_0_4B",
            "/scr/ahmedah/olmo/step1000_4B_tokens/seed_42_4B",
        ]

    tokenizer = AutoTokenizer.from_pretrained(model_list[0])
    tokenizer.pad_token = tokenizer.eos_token

    test_cases = [
        {
            "test_name": folder_name,
            "json_dir": f"/juice4/scr4/nlp/model-tracing/m2d2_s2orc/{folder_name}",
            "save_dir": f"/juice4/scr4/nlp/model-tracing/m2d2_s2orc/results_{folder_name}",
            "columns_ignored": ["text", "added", "id", "source", "timestamp", "subdomain"],
        }
        for folder_name in [
            "AI",
            "CV",
            "ET",
            "IM",
            "mtrl-sci",
            "stat-mech",
            "AR",
            "CY",
            "IR",
            "NA",
            "str-el",
            "art",
            "DB",
            "FL",
            "supr-con",
            "CC",
            "DC",
            "GA",
            "LG",
            "phil",
            "CE",
            "dis-nn",
            "GL",
            "LO",
            "CG",
            "DL",
            "GR",
            "MA",
            "quant-gas",
            "CL",
            "DM",
            "GT",
            "mes-hall",
            "CO",
            "DS",
            "HC",
            "MM",
            "soft",
            "CR",
            "EP",
            "HE",
            "MS",
            "SR",
        ]
    ]

    for test_case in test_cases:
        test_name = test_case["test_name"]
        json_dir = test_case["json_dir"]
        save_dir = test_case["save_dir"]
        columns_ignored = ["text", "added", "id", "source", "subdomain"]

        json_files = glob.glob(f"{json_dir}/*.json")
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        for json_file in json_files:
            print(f"Processing {json_file}")

            eval_dataset = load_dataset("json", data_files=json_file)

            def tokenize_function(examples):
                return tokenizer(examples["text"])

            tokenized_datasets = eval_dataset.map(
                tokenize_function, batched=True, num_proc=4, remove_columns=columns_ignored
            )
            lm_datasets = tokenized_datasets.map(
                group_texts,
                batched=True,
                batch_size=1000,
                num_proc=8,
            )

            training_args = TrainingArguments(
                output_dir="./hf_results",
                per_device_eval_batch_size=15,
                do_eval=True,
                report_to=None,
                dataloader_num_workers=8,
                use_cpu=True,
            )
            alphas = [0.0, 0.3, 0.5, 0.7, 1.0]
            initial_model = load_model(model_list[0])
            trainer = Trainer(model=initial_model, args=training_args, eval_dataset=lm_datasets)
            eval_dataloader = trainer.get_test_dataloader(lm_datasets["train"])
            del initial_model

            model_pairs = list(itertools.combinations(enumerate(model_list), 2))

            base_dir = f"{save_dir}/{test_name}"
            os.makedirs(base_dir, exist_ok=True)
            imgs_dir = os.path.join(base_dir, "imgs")
            os.makedirs(imgs_dir, exist_ok=True)
            csv_dir = os.path.join(base_dir, "csv")
            os.makedirs(csv_dir, exist_ok=True)

            current_model_a, current_model_b = None, None
            current_model_a_name, current_model_b_name = None, None

            for (idx_a, model_a_name), (idx_b, model_b_name) in tqdm(
                model_pairs, desc="Model Interpolation"
            ):
                if idx_a < idx_b:
                    perplexities = []

                    if current_model_a is None or current_model_a_name != model_a_name:
                        if current_model_a is not None:
                            del current_model_a
                            torch.cuda.empty_cache()
                        current_model_a = load_model(model_a_name).to("cpu")
                        current_model_a_name = model_a_name

                    if current_model_b is None or current_model_b_name != model_b_name:
                        if current_model_b is not None:
                            del current_model_b
                            torch.cuda.empty_cache()
                        current_model_b = load_model(model_b_name).to("cpu")
                        current_model_b_name = model_b_name

                    with torch.no_grad():
                        for alpha in tqdm(
                            alphas,
                            desc=f" \n Alpha Perplexities for {model_a_name} and {model_b_name}",
                        ):
                            interpolated_model = interpolate_models(
                                current_model_a, current_model_b, alpha, model_arch=model_arch
                            )
                            interpolated_model = interpolated_model.half().to(device)

                            start_time = time.time()
                            losses = []

                            for batch in tqdm(eval_dataloader, desc=f"\n Evaluating {alpha}"):
                                input_ids = batch["input_ids"].to(device)
                                attention_mask = batch["attention_mask"].to(device)
                                labels = batch["labels"].to(device)

                                outputs = interpolated_model(
                                    input_ids=input_ids,
                                    attention_mask=attention_mask,
                                    labels=labels,
                                )
                                loss = outputs.loss
                                losses.append(loss.item())

                            loss_mean = sum(losses) / len(losses)
                            print(f"Loss mean: {loss_mean}")
                            end_time = time.time()
                            execution_time = end_time - start_time
                            print(f"Execution time base: {execution_time} seconds")

                            perplexity = math.exp(loss_mean)
                            perplexities.append(perplexity)

                            interpolated_model.to("cpu")
                            del interpolated_model, input_ids, attention_mask, labels, outputs, loss
                            torch.cuda.empty_cache()
                            gc.collect()

                    model_a_name = model_a_name.split("/")[-1]
                    model_b_name = model_b_name.split("/")[-1]
                    json_filename = os.path.splitext(os.path.basename(json_file))[0]
                    csv_filename = f"{csv_dir}/perplexities_{json_filename}.csv"
                    csv_header = ["Model Pair"] + [f"Alpha {alpha}" for alpha in alphas]

                    if not os.path.exists(csv_filename):
                        with open(csv_filename, "w", newline="") as csvfile:
                            writer = csv.writer(csvfile)
                            writer.writerow(csv_header)

                    with open(csv_filename, "a", newline="") as csvfile:
                        writer = csv.writer(csvfile)
                        model_pair = f"{model_a_name} vs {model_b_name}"
                        row = [model_pair] + perplexities
                        writer.writerow(row)

                    plt.figure(figsize=(8, 6))
                    plt.plot(alphas, perplexities)
                    plt.xlabel("Alpha")
                    plt.ylabel("Perplexity")
                    plt.title(f"{model_a_name} (Left) vs {model_b_name} (Right)")

                    plot_filename = (
                        f"alpha_vs_perplexity_{model_a_name}_vs_{model_b_name}_{json_filename}.png"
                    )
                    plot_path = f"{imgs_dir}/{plot_filename}"
                    plt.savefig(plot_path, dpi=300, bbox_inches="tight")
                    plt.close()


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Model Interpolation")
    parser.add_argument(
        "--model_arch",
        choices=["llama", "olmo"],
        default="llama",
        help="default model architecture to use",
    )
    args = parser.parse_args()
    main(args)