File size: 8,485 Bytes
de071e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import torch
import gc
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
import itertools
import os
from datasets import load_dataset
from tqdm import tqdm
import math
import matplotlib.pyplot as plt
import csv
from utils import interpolate_models
import time
import argparse


block_size = 512


def group_texts(examples):
    # Concatenate all texts.
    concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
    total_length = len(concatenated_examples[list(examples.keys())[0]])
    # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
    # customize this part to your needs.
    total_length = (total_length // block_size) * block_size
    # Split by chunks of max_len.
    result = {
        k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
        for k, t in concatenated_examples.items()
    }
    result["labels"] = result["input_ids"].copy()
    return result


def load_model(model_name):
    return AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)


def main(args):
    # Automatically detect CUDA device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")
    os.environ["WANDB_MODE"] = "disabled"

    # Load models and tokenizer
    os.environ["TOKENIZERS_PARALLELISM"] = "false"

    model_arch = args.model_arch
    if model_arch == "llama":
        model_list = [
            "meta-llama/Llama-2-7b-hf",
            "codellama/CodeLlama-7b-hf",
            "openlm-research/open_llama_7b",
            "huggyllama/llama-7b",
            "lmsys/vicuna-7b-v1.5",
            "EleutherAI/llemma_7b",
            "lmsys/vicuna-7b-v1.1",
            "microsoft/Orca-2-7b",
            "LLM360/Amber",
        ]
    elif model_arch == "olmo":
        model_list = [
            "/scr/ahmedah/olmo/step1000_4B_tokens/seed_0_4B",
            "/scr/ahmedah/olmo/step1000_4B_tokens/seed_42_4B",
        ]

    # Load tokenizer
    tokenizer = AutoTokenizer.from_pretrained(model_list[0])
    tokenizer.pad_token = tokenizer.eos_token

    # Prepare dataset
    if args.dataset == "wikitext":
        eval_dataset = load_dataset("dlwh/wikitext_103_detokenized", split="test")
        columns_ignored = ["text"]
    else:
        raise ValueError("main.py only supports wikitext.")

    def tokenize_function(examples):
        return tokenizer(examples["text"])

    tokenized_datasets = eval_dataset.map(
        tokenize_function, batched=True, num_proc=4, remove_columns=columns_ignored
    )
    lm_datasets = tokenized_datasets.map(
        group_texts,
        batched=True,
        batch_size=1,
        num_proc=1,
    )

    # Prepare for evaluation. Batch size is optimized for ~7B model
    training_args = TrainingArguments(
        output_dir="./hf_results",
        per_device_eval_batch_size=3,
        do_eval=True,
        report_to=None,
        dataloader_num_workers=4,
        use_cpu=True,
    )
    alphas = [0.0, 0.3, 0.5, 0.7, 1.0]
    # Load an initial model to create the trainer and dataloader
    initial_model = load_model(model_list[0])
    trainer = Trainer(model=initial_model, args=training_args, eval_dataset=lm_datasets)
    eval_dataloader = trainer.get_test_dataloader(lm_datasets)
    del initial_model

    # Calculate the L2 distance between each pair of models
    model_pairs = list(itertools.combinations(enumerate(model_list), 2))

    # create directories for results
    base_dir = f"{os.getcwd()}/results"
    os.makedirs(base_dir, exist_ok=True)
    imgs_dir = os.path.join(base_dir, "imgs")
    os.makedirs(imgs_dir, exist_ok=True)
    csv_dir = os.path.join(base_dir, "csv")
    print(csv_dir)
    os.makedirs(csv_dir, exist_ok=True)

    current_model_a, current_model_b = None, None
    current_model_a_name, current_model_b_name = None, None

    for (idx_a, model_a_name), (idx_b, model_b_name) in tqdm(
        model_pairs, desc="Model Interpolation"
    ):
        if idx_a < idx_b:
            perplexities = []

            if current_model_a is None or current_model_a_name != model_a_name:
                if current_model_a is not None:
                    del current_model_a
                    torch.cuda.empty_cache()
                current_model_a = load_model(model_a_name).to("cpu")
                current_model_a_name = model_a_name

            if current_model_b is None or current_model_b_name != model_b_name:
                if current_model_b is not None:
                    del current_model_b
                    torch.cuda.empty_cache()
                current_model_b = load_model(model_b_name).to("cpu")
                current_model_b_name = model_b_name

            with torch.no_grad():
                for alpha in tqdm(
                    alphas, desc=f" \n Alpha Perplexities for {model_a_name} and {model_b_name}"
                ):

                    interpolated_model = interpolate_models(
                        current_model_a, current_model_b, alpha, model_arch=model_arch
                    )
                    interpolated_model = interpolated_model.half().to(device)

                    start_time = time.time()
                    losses = []

                    for batch in tqdm(eval_dataloader, desc=f"\n Evaluating {alpha}"):
                        input_ids = batch["input_ids"].to(device)
                        attention_mask = batch["attention_mask"].to(device)
                        labels = batch["labels"].to(device)

                        outputs = interpolated_model(
                            input_ids=input_ids,
                            attention_mask=attention_mask,
                            labels=labels,
                        )
                        loss = outputs.loss
                        losses.append(loss.item())

                    loss_mean = sum(losses) / len(losses)
                    print(f"Loss mean: {loss_mean}")
                    end_time = time.time()
                    execution_time = end_time - start_time
                    print(f"Execution time base: {execution_time} seconds")

                    perplexity = math.exp(loss_mean)
                    perplexities.append(perplexity)

                    # Move the model back to CPU
                    interpolated_model.to("cpu")

                    # Clear the GPU cache & collect free memory
                    del interpolated_model, input_ids, attention_mask, labels, outputs, loss
                    torch.cuda.empty_cache()
                    gc.collect()

            # split on HF org so we don't get accidental
            # directory error

            model_a_name = model_a_name.split("/")[-1]
            model_b_name = model_b_name.split("/")[-1]
            # Save perplexities and model names to CSV
            csv_filename = f"{csv_dir}/single_perplexities.csv"
            csv_header = ["Model Pair"] + [f"Alpha {alpha}" for alpha in alphas]

            if not os.path.exists(csv_filename):
                with open(csv_filename, "w", newline="") as csvfile:
                    writer = csv.writer(csvfile)
                    writer.writerow(csv_header)

            with open(csv_filename, "a", newline="") as csvfile:
                writer = csv.writer(csvfile)
                model_pair = f"{model_a_name} vs {model_b_name}"
                row = [model_pair] + perplexities
                writer.writerow(row)

            # Create the plot
            plt.figure(figsize=(8, 6))
            plt.plot(alphas, perplexities)
            plt.xlabel("Alpha")
            plt.ylabel("Perplexity")
            plt.title(f"{model_a_name} (Left) vs {model_b_name} (Right)")

            # Save the plot as a PNG file
            plot_filename = f"single_alpha_vs_perplexity_{model_a_name}_vs_{model_b_name}.png"
            plot_path = f"{imgs_dir}/{plot_filename}"
            plt.savefig(plot_path, dpi=300, bbox_inches="tight")
            plt.close()


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Model Interpolation")
    parser.add_argument(
        "--dataset", choices=["wikitext", "json"], default="wikitext", help="Dataset to use"
    )
    parser.add_argument(
        "--model_arch",
        choices=["llama", "olmo"],
        default="llama",
        help="default model architecture to use",
    )
    args = parser.parse_args()
    main(args)