File size: 6,718 Bytes
de071e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import torch
import glob
from typing import List
from datasets import load_dataset, concatenate_datasets, Dataset
from accelerate.data_loader import DataLoaderShard
from transformers import AutoTokenizer


def prepare_hf_dataset(hf_path, block_size, tokenizer, split="test"):
    raw_dataset = load_dataset(hf_path, split=split)
    dataset = raw_dataset.map(
        lambda examples: tokenize_function(examples, tokenizer),
        batched=True,
        remove_columns=["text"],
    ).map(lambda examples: group_texts(examples, block_size), batched=True, batch_size=1)
    dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "labels"])
    return dataset


def prepare_programming_dataset(
    json_path: str, block_size: int, tokenizer: AutoTokenizer, columns_ignored: List[str]
):
    raw_dataset = load_dataset("json", data_files=json_path)

    dataset = (
        raw_dataset["train"]
        .map(
            lambda examples: tokenize_function(examples, tokenizer),
            batched=True,
            num_proc=4,
            remove_columns=columns_ignored,
        )
        .map(
            lambda examples: group_texts(examples, block_size),
            batched=True,
            batch_size=1,
            num_proc=1,
        )
    )
    dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "labels"])
    return dataset


def prepare_random_sample_dataset(num_samples, block_size, vocab_size=32000):
    tokens = torch.randint(low=0, high=vocab_size, size=(num_samples, block_size))
    dictionary = {"input_ids": tokens, "attention_mask": torch.ones(tokens.shape), "labels": tokens}

    dataset = Dataset.from_dict(dictionary)
    dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "labels"])
    return dataset


def load_m2d2_datasets(
    test_name: str,
    block_size: int,
    tokenizer: AutoTokenizer,
    columns_ignored: List[str],
):
    base_path = "/juice4/scr4/nlp/model-tracing/m2d2_s2orc"
    json_dir = f"{base_path}/{test_name}"
    json_files = glob.glob(f"{json_dir}/*.json")

    if not json_files:
        raise ValueError(f"No JSON files found for test case: {test_name}")

    datasets = []
    for json_file in json_files:
        dataset = prepare_programming_dataset(json_file, block_size, tokenizer, columns_ignored)
        datasets.append(dataset)

    combined_dataset = concatenate_datasets(datasets)
    return combined_dataset


def load_dolma_programming_datasets(
    test_name: str,
    block_size: int,
    tokenizer: AutoTokenizer,
    columns_ignored: List[str],
):
    base_path = "/juice4/scr4/nlp/model-tracing/dolma_program_languages"

    json_dir = f"{base_path}/json_files_{test_name}"
    json_files = glob.glob(f"{json_dir}/*.json")

    datasets = []
    for json_file in json_files:
        dataset = prepare_programming_dataset(json_file, block_size, tokenizer, columns_ignored)
        datasets.append(dataset)

    combined_dataset = concatenate_datasets(datasets)
    return combined_dataset


def load_generated_datasets(base_model_name, ft_model_name, block_size, tokenizer, columns_ignored):

    json_file_base = (
        "/juice4/scr4/nlp/model-tracing/generations/"
        + base_model_name.replace("/", "-")
        + "_gentext.json"
    )
    json_file_ft = (
        "/juice4/scr4/nlp/model-tracing/generations/"
        + ft_model_name.replace("/", "-")
        + "_gentext.json"
    )
    dataset_base = prepare_programming_dataset(
        json_file_base, block_size, tokenizer, columns_ignored
    )
    dataset_ft = prepare_programming_dataset(json_file_ft, block_size, tokenizer, columns_ignored)

    datasets = []
    datasets.append(dataset_base)
    datasets.append(dataset_ft)

    combined_dataset = concatenate_datasets(datasets)

    return combined_dataset


def prepare_hf_dataloader(dataset, batch_size: int):
    return DataLoaderShard(dataset, batch_size=batch_size)


def evaluate_70b(model, dataloader, device: str = "cuda:0"):
    losses = []
    with torch.no_grad():
        for batch in dataloader:
            input_ids = batch["input_ids"].to(device)
            attention_mask = batch["attention_mask"].to(device)
            labels = batch["labels"].to(device)

            outputs = model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                labels=labels,
            )
            loss = outputs.loss
            losses.append(loss.item())

    return losses


def evaluate(model, dataloader, device: str = "cuda"):
    losses = []
    model.to(device)
    with torch.no_grad():
        for batch in dataloader:
            input_ids = batch["input_ids"].to(device)
            attention_mask = batch["attention_mask"].to(device)
            labels = batch["labels"].to(device)

            outputs = model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                labels=labels,
            )
            loss = outputs.loss
            losses.append(loss.item())

    model.to("cpu")
    return losses


def prepare_aya_dataset(subset: str, language: str, block_size: int, tokenizer: AutoTokenizer):
    """
    Prepare the Aya dataset for a specific subset and language.
    """
    raw_dataset = load_dataset("CohereForAI/aya_evaluation_suite", subset)
    filtered_dataset = raw_dataset.filter(lambda example: example["language"] == language)

    dataset = filtered_dataset.map(
        lambda examples: tokenize_function(examples, tokenizer),
        batched=True,
        remove_columns=filtered_dataset.column_names,
    ).map(lambda examples: group_texts(examples, block_size), batched=True, batch_size=1)

    dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "labels"])
    return dataset


def tokenize_aya_function(examples, tokenizer: AutoTokenizer):
    """
    Tokenize Aya dataset examples.
    """
    return tokenizer(examples["inputs"])


def tokenize_function(examples, tokenizer):
    if "text" in examples:
        return tokenizer(examples["text"])
    elif "inputs" in examples:
        return tokenizer(examples["inputs"])
    else:
        raise ValueError("Neither 'text' nor 'inputs' found in examples")


def group_texts(examples, block_size):
    concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
    total_length = len(concatenated_examples["input_ids"])

    total_length = (total_length // block_size) * block_size
    # Split by chunks of max_len.
    result = {
        k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
        for k, t in concatenated_examples.items()
    }
    result["labels"] = result["input_ids"].copy()
    return result