import torch from tracing.perm.permute import permute_model from scripts.perm.main import p_value_exact, p_value_approx def statistic(base_model, ft_model, mc_stat, l2_stat, num_perm, emb_dim=4096, mlp_dim=11008): unperm_stat_mc = mc_stat(base_model, ft_model) unperm_stat_l2 = l2_stat(base_model, ft_model) print(unperm_stat_mc, unperm_stat_l2) perm_stats_mc = [] perm_stats_l2 = [] for i in range(num_perm): mlp_permutation = torch.randperm(mlp_dim) emb_permutation = torch.randperm(emb_dim) permute_model(ft_model, mlp_permutation, emb_permutation) perm_stat_mc = mc_stat(base_model, ft_model) perm_stat_l2 = l2_stat(base_model, ft_model) perm_stats_mc.append(perm_stat_mc) perm_stats_l2.append(perm_stat_l2) print(i, perm_stat_mc, perm_stat_l2) exact_mc = p_value_exact(unperm_stat_mc, perm_stats_mc.copy()) approx_mc = p_value_approx(unperm_stat_mc, perm_stats_mc.copy()) exact_l2 = p_value_exact(unperm_stat_l2, perm_stats_l2.copy()) approx_l2 = p_value_approx(unperm_stat_l2, perm_stats_l2.copy()) print(exact_mc, approx_mc) print(exact_l2, approx_l2) return ( exact_mc, approx_mc, exact_l2, approx_l2, unperm_stat_mc, unperm_stat_l2, perm_stats_mc, perm_stats_l2, )