import os, re import gradio as gr # Keep Transformers quiet & CPU-only friendly os.environ.setdefault("TOKENIZERS_PARALLELISM", "false") # -------- Config -------- URL_MODEL_ID = "CrabInHoney/urlbert-tiny-v4-malicious-url-classifier" URL_LABEL_MAP = { "LABEL_0": "benign", "LABEL_1": "defacement", "LABEL_2": "malware", "LABEL_3": "phishing", } URL_RE = re.compile(r"""(?xi)\b(?:https?://|www\.)[a-z0-9\-._~%]+(?:/[^\s<>"']*)?""") _pipe = None # created on first analyze() def _extract_urls(t: str): return sorted(set(m.group(0) for m in URL_RE.finditer(t or ""))) def _pretty(raw, id2label): if id2label: if raw in id2label: return id2label[raw] k = raw.replace("LABEL_", "") if k in id2label: return id2label[k] return URL_LABEL_MAP.get(raw, raw) def analyze(text: str) -> str: text = (text or "").strip() if not text: return "Paste an email body or a URL." # Use single-URL mode if it looks like one; else extract from email text urls = [text] if (text.lower().startswith(("http://","https://","www.")) and " " not in text) else _extract_urls(text) if not urls: return "No URLs detected in the text." # Lazy import + pipeline creation keeps startup instant global _pipe if _pipe is None: from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline tok = AutoTokenizer.from_pretrained(URL_MODEL_ID) mdl = AutoModelForSequenceClassification.from_pretrained(URL_MODEL_ID) _pipe = pipeline("text-classification", model=mdl, tokenizer=tok, device=-1, top_k=None) id2label = getattr(_pipe.model.config, "id2label", None) lines = [] unsafe = False for u in urls: scores = sorted(_pipe(u)[0], key=lambda s: s["score"], reverse=True) top = scores[0] lbl = _pretty(top["label"], id2label) conf = 100 * float(top["score"]) lines.append(f"- **{u}** → **{lbl}** ({conf:.2f}%)") if lbl.lower() in {"phishing", "malware", "defacement"}: unsafe = True verdict = "🔴 **UNSAFE (links flagged)**" if unsafe else "🟢 **SAFE (all links benign)**" return verdict + "\n\n" + "\n".join(lines) demo = gr.Interface( fn=analyze, inputs=gr.Textbox(lines=6, label="Email or URL", placeholder="Paste a URL or a full email…"), outputs=gr.Markdown(label="Result"), title="🛡️ Phishing Detector (via Link Analysis)", description="We extract links and classify each with a compact malicious-URL model (CPU-only, free tier).", ) if __name__ == "__main__": demo.launch()