import json import os from pathlib import Path import shutil import warnings from PIL import Image from dawsonia import io from dawsonia import digitize from dawsonia.ml import ml import gradio as gr import numpy as np from numpy.typing import NDArray import pandas as pd import pooch from .visualizer_functions import Page, TableCell # Max number of images a user can upload at once MAX_IMAGES = int(os.environ.get("MAX_IMAGES", 5)) # Setup the cache directory to point to the directory where the example images # are located. The images must lay in the cache directory because otherwise they # have to be reuploaded when drag-and-dropped to the input image widget. GRADIO_CACHE = os.getenv("GRADIO_CACHE_DIR", ".gradio_cache") DATA_CACHE = os.path.join(GRADIO_CACHE, "data") EXAMPLES_DIRECTORY = os.path.join(os.getcwd(), "examples") # Example books PIPELINES: dict[str, dict[str, str]] = { "bjuröklubb": dict( url="https://git.smhi.se/ai-for-obs/data/-/raw/688c04f13e8e946962792fe4b4e0ded98800b154/raw_zarr/BJUR%C3%96KLUBB/DAGBOK_Bjur%C3%B6klubb_Station_Jan-Dec_1928.zarr.zip", known_hash="sha256:6d87b7f79836ae6373cfab11260fe28787d93fe16199fefede6697ccd750f71a", ), "härnösand": dict( url="https://git.smhi.se/ai-for-obs/data/-/raw/688c04f13e8e946962792fe4b4e0ded98800b154/raw_zarr/H%C3%84RN%C3%96SAND/DAGBOK_H%C3%A4rn%C3%B6sand_Station_1934.zarr.zip", known_hash="sha256:a58fdb6521214d0bd569c9325ce78d696738de28ce6ec869cde0d46616b697f2", ), } def run_dawsonia( table_fmt_config_override, first_page, last_page, prob_thresh, book: io.Book, book_path, gallery, progress=gr.Progress(), ): if book is None: raise ValueError("You need to select / upload the pages to digitize") progress(0, desc="Dawsonia: starting") model_path = Path("data/models/dawsonia/2024-07-02") output_path = Path("output") output_path.mkdir(exist_ok=True) print("Dawsonia: digitizing", book) table_fmt = book.table_format final_output_path_book = output_path / book.station_name output_path_book = Path(book_path).parent / "output" output_path_book.mkdir(exist_ok=True, parents=True) (output_path_book / "probablities").mkdir(exist_ok=True) init_data: list[dict[str, NDArray]] = [ { key: np.empty(len(table_fmt.rows), dtype="O") for key in table_fmt.columns[table_idx] } for table_idx in table_fmt.preproc.idx_tables_size_verify ] collection = [] images = [] with warnings.catch_warnings(): warnings.simplefilter("ignore", FutureWarning) for page_number in range(first_page, last_page): output_path_page = output_path_book / str(page_number) gr.Info(f"Digitizing {page_number = }") if ( not (output_path_book / str(page_number)) .with_suffix(".parquet") .exists() ): digitize.digitize_page_and_write_output( book, init_data, page_number=page_number, date_str=f"0000-page-{page_number}", model_path=model_path, model_predict=ml.model_predict, prob_thresh=prob_thresh, output_path_page=output_path_page, output_text_fmt=False, debug=False, ) _synctree(output_path_book, final_output_path_book) progress_value = (page_number - first_page) / max(1, last_page - first_page) # if final_output_path_book.exists(): # shutil.rmtree(final_output_path_book) # shutil.copytree(output_path_book, final_output_path_book) for page_number, im_from_gallery in zip(range(first_page, last_page), gallery): if results := read_page( final_output_path_book, str(page_number), prob_thresh, progress, 1.0, table_fmt.preproc.idx_tables_size_verify, ): # , im_from_gallery[0]) page, im = results collection.append(page) images.append(im) yield collection, gr.skip() else: gr.Info(f"No tables detected in {page_number = }") gr.Info("Pages were succesfully digitized ✨") # yield collection, images yield collection, gr.skip() def _synctree(source_dir, dest_dir): source_dir = Path(source_dir) dest_dir = Path(dest_dir) if not dest_dir.exists(): dest_dir.mkdir(parents=True) for root, _, files in os.walk(source_dir): root = Path(root) relative_root = root.relative_to(source_dir) # Create subdirectories in the destination directory dest_subdir_path = dest_dir / relative_root if not dest_subdir_path.exists(): dest_subdir_path.mkdir(parents=True, exist_ok=True) for file_ in files: source_file_path = root / file_ dest_file_path = dest_subdir_path / file_ # Copy only if the file does not already exist or is newer if ( not dest_file_path.exists() or (source_file_path.stat().st_mtime - dest_file_path.stat().st_mtime) > 0 ): shutil.copy2(source_file_path, dest_file_path) def read_page( output_path_book: Path, prefix: str, prob_thresh: float, progress, progress_value, idx_tables_size_verify: list[int], im_path_from_gallery: str = "", ): stats = digitize.Statistics.from_json( (output_path_book / "statistics" / prefix).with_suffix(".json") ) print(stats) progress(progress_value, desc=f"Dawsonia: {stats!s:.50}") if stats.tables_detected > 0: values_df = pd.read_parquet((output_path_book / prefix).with_suffix(".parquet")) prob_df = pd.read_parquet( (output_path_book / "probablities" / prefix).with_suffix(".parquet") ) table_meta = json.loads( (output_path_book / "table_meta" / prefix).with_suffix(".json").read_text() ) with Image.open( image_path := (output_path_book / "pages" / prefix).with_suffix(".webp") ) as im: width = im.width height = im.height values_array = values_df.values.flatten() prob_array = prob_df.values.flatten() # FIXME: hardcoded to get upto 2 tables. Use idx_tables_size_verify and reconstruct bbox_array try: bbox_array = np.hstack(table_meta["table_positions"][:2]).reshape(-1, 4) except ValueError: bbox_array = np.reshape(table_meta["table_positions"][0], (-1, 4)) cells = [ make_cell(value, bbox) for value, prob, bbox in zip(values_array, prob_array, bbox_array) if prob > prob_thresh ] return Page(width, height, cells, im_path_from_gallery or str(image_path)), im def make_cell(value: str, bbox: NDArray[np.int64]): y, x, h, w = bbox xmin, ymin = x - w // 2, y - h // 2 xmax, ymax = x + w // 2, y + h // 2 polygon = (xmin, ymin), (xmax, ymin), (xmax, ymax), (xmin, ymax), (xmin, ymin) return TableCell(polygon, text_x=x - w // 4, text_y=y, text=value) def all_example_images() -> list[str]: """ Get paths to all example images. """ examples = [ os.path.join(EXAMPLES_DIRECTORY, f"{pipeline}.png") for pipeline in PIPELINES ] return examples def get_selected_example_image( first_page, last_page, event: gr.SelectData ) -> tuple[list[Image.Image], io.Book, str, str, str] | None: """ Get the name of the pipeline that corresponds to the selected image. """ orig_name = event.value["image"]["orig_name"] # for name, details in PIPELINES.items(): orig_path = Path(orig_name) name = orig_path.name for suffix in orig_path.suffixes[::-1]: name = name.removesuffix(suffix) station_tf = Path("table_formats", name).with_suffix(".toml") if (last_page - first_page) > MAX_IMAGES: error = f"Maximum images you can digitize is set to: {MAX_IMAGES}" gr.Warning(error) raise ValueError(error) if name in PIPELINES: book_path = pooch.retrieve(**PIPELINES[name], path=DATA_CACHE) first, last, book = io.read_book(book_path) book._name = name book.size_cell = [1.0, 1.0, 1.0, 1.0] return ( [book.read_image(pg) for pg in range(first_page, last_page)], book, book_path, station_tf.name, station_tf.read_text(), ) def move_uploaded_file(uploaded, table_fmt_filename): current_directory = Path(uploaded).parent # Define the target directory where you want to save the uploaded files target_directory = current_directory / table_fmt_filename.removesuffix(".toml") os.makedirs(target_directory, exist_ok=True) # Move the uploaded file to the target directory true_path = Path(target_directory / Path(uploaded).name) # if true_path.exists(): # true_path.unlink() shutil.copy2(uploaded, true_path) print(f"Copy created", true_path) return str(true_path) def get_uploaded_image( first_page: int, last_page: int, table_fmt_filename: str, filename: str ) -> tuple[list[NDArray], io.Book, str, str] | None: orig_path = Path(filename) name = orig_path.name for suffix in orig_path.suffixes[::-1]: name = name.removesuffix(suffix) station_tf = Path("table_formats", table_fmt_filename) if not station_tf.exists(): station_tf = Path("table_formats", "bjuröklubb.toml") first, last, book = io.read_book(Path(filename)) book._name = name book.size_cell = [1.0, 1.0, 1.0, 1.0] return ( [book.read_page(pg) for pg in range(first_page, last_page)], book, filename, station_tf.read_text(), ) def overwrite_table_format_file(book: io.Book, book_path, table_fmt: str): name = book.station_name table_fmt_dir = Path("table_formats") (table_fmt_dir / name).with_suffix(".toml").write_text(table_fmt) book.table_format = io.read_specific_table_format(table_fmt_dir, Path(book_path)) gr.Info(f"Overwritten table format file for {name}") return book