Spaces:
Sleeping
Sleeping
switch from Inference API to local model with tokenizer (openai-community/gpt2)
Browse files
app.py
CHANGED
|
@@ -1,57 +1,27 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from huggingface_hub import InferenceClient
|
| 3 |
-
import os
|
| 4 |
import re
|
| 5 |
-
|
|
|
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
# torch_dtype=torch.bfloat16,
|
| 11 |
-
# attn_implementation="flash_attention_2",
|
| 12 |
-
#)
|
| 13 |
|
| 14 |
-
# Load API key from environment variables
|
| 15 |
-
#HF_API_TOKEN = os.getenv("HUG_TOKEN_READ2")
|
| 16 |
-
HF_INF_KEY = os.getenv("HF_INF_PROVIDERS_TOKEN")
|
| 17 |
-
#HF_INF_KEY = os.getenv("INF_NEBIUS")
|
| 18 |
-
|
| 19 |
-
# Hugging Face Inference API Client
|
| 20 |
-
#client = InferenceClient(model="mistralai/Mistral-7B-Instruct-v0.1", token=HF_API_TOKEN)
|
| 21 |
-
#client = InferenceClient(model="openGPT-X/Teuken-7B-instruct-commercial-v0.4", token=HF_API_TOKEN)
|
| 22 |
-
#client = InferenceClient(model=qwenModel, token=HF_API_TOKEN)
|
| 23 |
-
#client = InferenceClient(model="microsoft/Phi-4-mini-instruct", token=HF_API_TOKEN)
|
| 24 |
-
#client = InferenceClient(model="openai-community/gpt2", token=HF_API_TOKEN)
|
| 25 |
-
client = InferenceClient(
|
| 26 |
-
provider="nebius",
|
| 27 |
-
api_key=HF_INF_KEY
|
| 28 |
-
)
|
| 29 |
-
|
| 30 |
-
# Function to translate text into emojis
|
| 31 |
def text_to_emoji(text):
|
| 32 |
# remove special characters
|
| 33 |
text_cleaned = re.sub(r"[.,!?;:]", "", text)
|
| 34 |
-
|
| 35 |
-
prompt = f"Convert this sentence into an emoji-sequence which conveys a similar meaning and return only the emojis, no explanation:\n\n\"{text_cleaned}\""
|
| 36 |
-
#response = client.text_generation(prompt, max_new_tokens=50)
|
| 37 |
-
#return response
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
]
|
| 50 |
-
}
|
| 51 |
-
],
|
| 52 |
-
max_tokens=25
|
| 53 |
-
)
|
| 54 |
-
return completion.choices[0].message
|
| 55 |
|
| 56 |
# Gradio UI
|
| 57 |
iface = gr.Interface(
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
import re
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
+
import torch
|
| 5 |
|
| 6 |
+
# Modell und Tokenizer laden
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
| 8 |
+
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
|
|
|
|
|
|
|
|
|
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
def text_to_emoji(text):
|
| 11 |
# remove special characters
|
| 12 |
text_cleaned = re.sub(r"[.,!?;:]", "", text)
|
| 13 |
+
prompt = f"Convert the following sentence into an emoji-sequence which conveys a similar meaning and return only the emojis, no explanation:\n\n\"{text_cleaned}\""
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
# Tokenisieren
|
| 16 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 17 |
+
|
| 18 |
+
# Antwort generieren
|
| 19 |
+
outputs = model.generate(**inputs, max_new_tokens=25, do_sample=True, temperature=0.7)
|
| 20 |
+
|
| 21 |
+
# Antwort decodieren
|
| 22 |
+
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 23 |
+
|
| 24 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
# Gradio UI
|
| 27 |
iface = gr.Interface(
|