rafmacalaba's picture
add new v3 ersion
19f6ee2
raw
history blame
15.9 kB
import boto3
import os
import json
import re
import gradio as gr
from typing import List, Dict, Tuple, Optional, Union, Any
# โ”€โ”€ S3 CONFIG โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
s3 = boto3.client(
"s3",
aws_access_key_id = os.getenv("AWS_ACCESS_KEY_ID"),
aws_secret_access_key = os.getenv("AWS_SECRET_ACCESS_KEY"),
region_name = os.getenv("AWS_DEFAULT_REGION", "ap-southeast-2"),
)
# ai4data/datause-annotation
# S3 bucket and keys
BUCKET = "doccano-processed"
#INIT_KEY = "gradio/initial_data_train.json"
INIT_KEY = "gradio/refugee_train_initial_data_v3.json"
#VALID_PREFIX = "validated_records/"
VALID_PREFIX = "refugee_train_validated_v3/"
# โ”€โ”€ Helpers to load & save from S3 โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
def load_initial_data() -> List[Dict]:
obj = s3.get_object(Bucket=BUCKET, Key=INIT_KEY)
return json.loads(obj['Body'].read())
def load_all_validations() -> Dict[int, Dict]:
records = {}
pages = s3.get_paginator("list_objects_v2").paginate(
Bucket=BUCKET, Prefix=VALID_PREFIX
)
for page in pages:
for obj in page.get("Contents", []):
key = obj["Key"]
idx = int(os.path.splitext(os.path.basename(key))[0])
data = s3.get_object(Bucket=BUCKET, Key=key)["Body"].read()
records[idx] = json.loads(data)
return records
def save_single_validation(idx: int, record: Dict):
key = f"{VALID_PREFIX}{idx}.json"
s3.put_object(
Bucket = BUCKET,
Key = key,
Body = json.dumps(record, indent=2).encode('utf-8'),
ContentType = 'application/json'
)
class DynamicDataset:
def __init__(self, data: List[Dict]):
self.data = data
self.len = len(data)
self.current = 0
for ex in self.data:
ex.setdefault("validated", False)
def example(self, idx: int) -> Dict:
self.current = max(0, min(self.len - 1, idx))
return self.data[self.current]
def next(self) -> Dict:
if self.current < self.len - 1:
self.current += 1
return self.data[self.current]
def prev(self) -> Dict:
if self.current > 0:
self.current -= 1
return self.data[self.current]
def jump_next_unvalidated(self) -> Dict:
for i in range(self.current + 1, self.len):
if not self.data[i]["validated"]:
self.current = i
break
return self.data[self.current]
def jump_prev_unvalidated(self) -> Dict:
for i in range(self.current - 1, -1, -1):
if not self.data[i]["validated"]:
self.current = i
break
return self.data[self.current]
def validate(self):
self.data[self.current]["validated"] = True
def tokenize_text(text: str) -> List[str]:
return re.findall(r"\w+(?:[-_]\w+)*|[^\s\w]", text)
def prepare_for_highlight(data: Dict) -> List[Tuple[str, Optional[str]]]:
tokens = data["tokenized_text"]
ner = data["ner"]
highlighted, curr_ent, ent_buf, norm_buf = [], None, [], []
for idx, tok in enumerate(tokens):
if curr_ent is None or idx > curr_ent[1]:
if ent_buf:
highlighted.append((" ".join(ent_buf), curr_ent[2]))
ent_buf = []
curr_ent = next((e for e in ner if e[0] == idx), None)
if curr_ent and curr_ent[0] <= idx <= curr_ent[1]:
if norm_buf:
highlighted.append((" ".join(norm_buf), None))
norm_buf = []
ent_buf.append(tok)
else:
if ent_buf:
highlighted.append((" ".join(ent_buf), curr_ent[2]))
ent_buf = []
norm_buf.append(tok)
if ent_buf:
highlighted.append((" ".join(ent_buf), curr_ent[2]))
if norm_buf:
highlighted.append((" ".join(norm_buf), None))
return [(re.sub(r"\s(?=[,\.!?โ€ฆ:;])", "", txt), lbl) for txt, lbl in highlighted]
def extract_tokens_and_labels(highlighted: List[Dict[str, Union[str, None]]]
) -> Tuple[List[str], List[Tuple[int,int,str]]]:
tokens, ner = [], []
token_idx = 0
for entry in highlighted:
text = entry['token']
label = entry.get('class_or_confidence') or entry.get('class') or entry.get('label')
# split into real tokens
toks = tokenize_text(text)
start = token_idx
end = token_idx + len(toks) - 1
tokens.extend(toks)
if label:
ner.append((start, end, label))
token_idx = end + 1
return tokens, ner
# โ”€โ”€ App factory โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
# def create_demo() -> gr.Blocks:
# data = load_initial_data()
# validated_store = load_all_validations()
# for idx in validated_store:
# if 0 <= idx < len(data):
# data[idx]["validated"] = True
# dynamic_dataset = DynamicDataset(data)
# with gr.Blocks() as demo:
# prog = gr.Slider(0, dynamic_dataset.len-1, value=0, step=1, label="Example #", interactive=False)
# inp_box = gr.HighlightedText(label="Sentence", interactive=True)
# status = gr.Checkbox(label="Validated?", value=False, interactive=False)
# filename_disp = gr.Markdown(label="Filename") # NEW: shows current filename
# page_disp = gr.Markdown(label="Page") # NEW: shows current page number
# gr.Markdown(
# "[๐Ÿ“– Entity Tag Guide](https://huggingface.co/spaces/rafmacalaba/datause-annotation/blob/main/guidelines.md)"
# )
# with gr.Row():
# prev_btn = gr.Button("โ—€๏ธ Previous")
# apply_btn = gr.Button("๐Ÿ“ Apply Changes")
# next_btn = gr.Button("Next โ–ถ๏ธ")
# with gr.Row():
# skip_prev = gr.Button("โฎ๏ธ Prev Unvalidated")
# validate_btn = gr.Button("โœ… Validate")
# skip_next = gr.Button("โญ๏ธ Next Unvalidated")
# # def load_example(idx):
# # rec = validated_store.get(idx, dynamic_dataset.example(idx))
# # segs = prepare_for_highlight(rec)
# # return segs, rec.get("validated", False), idx
# def load_example(idx):
# rec = validated_store.get(idx, dynamic_dataset.example(idx))
# segs = prepare_for_highlight(rec)
# return (
# segs,
# rec.get("validated", False),
# idx,
# rec.get("filename", ""), # <-- returns filename for filename_disp
# f"Page {rec.get('page', '')}" # <-- returns page for page_disp
# )
# def update_example(highlighted, idx: int):
# # grab the record
# rec = dynamic_dataset.data[idx]
# # reโ€tokenize from the raw text (same as do_validate)
# orig_tokens = tokenize_text(rec["text"])
# # realign the user's highlights back to those tokens
# new_ner = align_spans_to_tokens(highlighted, orig_tokens)
# # overwrite both token list and span list (and mark unโ€validated)
# rec["tokenized_text"] = orig_tokens
# rec["ner"] = new_ner
# rec["validated"] = False
# # reโ€render
# return prepare_for_highlight(rec)
# def align_spans_to_tokens(
# highlighted: List[Dict[str, Union[str, None]]],
# tokens: List[str]
# ) -> List[Tuple[int,int,str]]:
# """
# Align each highlighted chunk to the next matching tokens in the list,
# advancing a pointer so repeated tokens map in the order you clicked them.
# """
# spans = []
# search_start = 0
# for entry in highlighted:
# text = entry["token"]
# label = entry.get("class_or_confidence") or entry.get("label") or entry.get("class")
# if not label:
# continue
# chunk_toks = tokenize_text(text)
# # scan only from the end of the last match
# for i in range(search_start, len(tokens) - len(chunk_toks) + 1):
# if tokens[i:i+len(chunk_toks)] == chunk_toks:
# spans.append((i, i + len(chunk_toks) - 1, label))
# search_start = i + len(chunk_toks)
# break
# else:
# print(f"โš ๏ธ Couldnโ€™t align chunk: {text!r}")
# return spans
# def do_validate(highlighted, idx: int):
# # mark validated in memory
# dynamic_dataset.validate()
# # grab the record
# rec = dynamic_dataset.data[idx]
# # re-tokenize from the original text
# orig_tokens = tokenize_text(rec["text"])
# # realign the user's highlighted segments to those tokens
# new_ner = align_spans_to_tokens(highlighted, orig_tokens)
# # overwrite both token list and span list
# rec["tokenized_text"] = orig_tokens
# rec["ner"] = new_ner
# # persist
# save_single_validation(idx, rec)
# # re-render and show checkbox checked
# return prepare_for_highlight(rec), True
# def nav(fn):
# rec = fn()
# segs = prepare_for_highlight(rec)
# return segs, rec.get("validated", False), dynamic_dataset.current
# demo.load(load_example, inputs=prog, outputs=[inp_box, status, prog])
# apply_btn.click(
# fn=update_example,
# inputs=[inp_box, prog], # pass both the highlights *and* the example idx
# outputs=inp_box
# )
# #apply_btn.click(update_spans, inputs=inp_box, outputs=inp_box)
# prev_btn.click(lambda: nav(dynamic_dataset.prev), inputs=None, outputs=[inp_box, status, prog])
# validate_btn.click(do_validate, inputs=[inp_box, prog], outputs=[inp_box, status])
# next_btn.click(lambda: nav(dynamic_dataset.next), inputs=None, outputs=[inp_box, status, prog])
# skip_prev.click(lambda: nav(dynamic_dataset.jump_prev_unvalidated), inputs=None, outputs=[inp_box, status, prog])
# skip_next.click(lambda: nav(dynamic_dataset.jump_next_unvalidated), inputs=None, outputs=[inp_box, status, prog])
# return demo
def create_demo() -> gr.Blocks:
data = load_initial_data()
validated_store = load_all_validations()
# mark any pre-validated examples
for idx in validated_store:
if 0 <= idx < len(data):
data[idx]["validated"] = True
dynamic_dataset = DynamicDataset(data)
def make_info(rec):
fn = rec.get("filename", "โ€”")
pg = rec.get("page", "โ€”")
# Markdown with line break for Gradio
return f"**File:** `{fn}` \n**Page:** `{pg}`"
def align_spans_to_tokens(
highlighted: List[Dict[str, Union[str, None]]],
tokens: List[str]
) -> List[Tuple[int, int, str]]:
"""
Align each highlighted chunk to the next matching tokens in the list,
advancing a pointer so repeated tokens map in the order you clicked them.
"""
spans = []
search_start = 0
for entry in highlighted:
text = entry["token"]
label = entry.get("class_or_confidence") or entry.get("label") or entry.get("class")
if not label:
continue
chunk_toks = tokenize_text(text)
# scan only from the end of the last match
for i in range(search_start, len(tokens) - len(chunk_toks) + 1):
if tokens[i:i + len(chunk_toks)] == chunk_toks:
spans.append((i, i + len(chunk_toks) - 1, label))
search_start = i + len(chunk_toks)
break
else:
print(f"โš ๏ธ Couldnโ€™t align chunk: {text!r}")
return spans
def load_example(idx):
rec = validated_store.get(idx, dynamic_dataset.example(idx))
segs = prepare_for_highlight(rec)
return segs, rec.get("validated", False), idx, make_info(rec)
def update_example(highlighted, idx: int):
rec = dynamic_dataset.data[idx]
# reโ€tokenize
orig_tokens = tokenize_text(rec["text"])
# realign highlights
new_ner = align_spans_to_tokens(highlighted, orig_tokens)
# overwrite & mark un-validated
rec["tokenized_text"] = orig_tokens
rec["ner"] = new_ner
rec["validated"] = False
return prepare_for_highlight(rec), rec["validated"], idx, make_info(rec)
def do_validate(highlighted, idx: int):
# in-memory mark
dynamic_dataset.validate()
rec = dynamic_dataset.data[idx]
orig_tokens = tokenize_text(rec["text"])
new_ner = align_spans_to_tokens(highlighted, orig_tokens)
rec["tokenized_text"] = orig_tokens
rec["ner"] = new_ner
# persist to disk/store
save_single_validation(idx, rec)
return prepare_for_highlight(rec), True, make_info(rec)
def nav(fn):
rec = fn()
segs = prepare_for_highlight(rec)
return segs, rec.get("validated", False), dynamic_dataset.current, make_info(rec)
with gr.Blocks() as demo:
prog = gr.Slider(0, dynamic_dataset.len-1, value=0, step=1, label="Example #", interactive=False)
inp_box = gr.HighlightedText(label="Sentence", interactive=True)
info_md = gr.Markdown(label="Source") # โ† shows filename & page
status = gr.Checkbox(label="Validated?", value=False, interactive=False)
gr.Markdown(
"[๐Ÿ“– Entity Tag Guide](https://huggingface.co/spaces/rafmacalaba/datause-annotation/blob/main/guidelines.md)"
)
with gr.Row():
prev_btn = gr.Button("โ—€๏ธ Previous")
apply_btn = gr.Button("๐Ÿ“ Apply Changes")
next_btn = gr.Button("Next โ–ถ๏ธ")
with gr.Row():
skip_prev = gr.Button("โฎ๏ธ Prev Unvalidated")
validate_btn = gr.Button("โœ… Validate")
skip_next = gr.Button("โญ๏ธ Next Unvalidated")
# initial load
demo.load(load_example, inputs=prog, outputs=[inp_box, status, prog, info_md])
# wire up actions (all now also update info_md)
apply_btn.click(update_example, inputs=[inp_box, prog], outputs=[inp_box, status, prog, info_md])
prev_btn.click(lambda: nav(dynamic_dataset.prev), inputs=None, outputs=[inp_box, status, prog, info_md])
next_btn.click(lambda: nav(dynamic_dataset.next), inputs=None, outputs=[inp_box, status, prog, info_md])
skip_prev.click(lambda: nav(dynamic_dataset.jump_prev_unvalidated), inputs=None, outputs=[inp_box, status, prog, info_md])
skip_next.click(lambda: nav(dynamic_dataset.jump_next_unvalidated), inputs=None, outputs=[inp_box, status, prog, info_md])
validate_btn.click(do_validate, inputs=[inp_box, prog], outputs=[inp_box, status, info_md])
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch(share=True, inline=True, debug=True)