File size: 7,157 Bytes
fc4b12d
fd0fe48
d8c3809
fc4b12d
3b9fb2c
2463f9e
fc4b12d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab71a6e
 
 
 
 
 
 
 
 
 
 
2463f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc4b12d
 
 
 
 
 
 
cd683ff
fc4b12d
 
 
 
 
cd683ff
c35975c
fc4b12d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e70665f
fc4b12d
 
 
 
9c95361
fc4b12d
fd0fe48
fc4b12d
cd683ff
fc4b12d
 
 
cd683ff
fc4b12d
fd0fe48
3d53082
fc4b12d
215cbc3
fc4b12d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c38ba9f
fc4b12d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13e7831
d799589
fc4b12d
215cbc3
 
fc4b12d
 
 
 
 
 
 
 
 
 
 
 
d8c3809
13e7831
fc4b12d
 
 
 
13e7831
fc4b12d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import re
import json
from collections import defaultdict
import gradio as gr
from typing import List, Dict, Any, Tuple
# Load environment variable for cache dir (useful on Spaces)
_CACHE_DIR = os.environ.get("CACHE_DIR", None)

# Import GLiNER model and relation extractor
from gliner import GLiNER
from gliner.multitask import GLiNERRelationExtractor

# Cache and initialize model + relation extractor
DATA_MODEL_ID = "rafmacalaba/gliner_re_finetuned-v3"
model = GLiNER.from_pretrained(DATA_MODEL_ID, cache_dir=_CACHE_DIR)
relation_extractor = GLiNERRelationExtractor(model=model)

# Sample text
SAMPLE_TEXT = (
    "In early 2012, the World Bank published the full report of the 2011 Demographic and Health Survey (DHS) "
    "for the Republic of Mali. Conducted between June and December 2011 under the technical oversight of Mali’s "
    "National Institute of Statistics and paired with on-the-ground data-collection teams, this nationally representative survey "
    "gathered detailed information on household composition, education levels, employment and income, fertility and family planning, "
    "maternal and child health, nutrition, mortality, and access to basic services. By combining traditional census modules with "
    "specialized questionnaires on women’s and children’s health, the DHS offers policymakers, development partners, and researchers "
    "a rich dataset of socioeconomic characteristics—ranging from literacy and school attendance to water and sanitation infrastructure—"  
    "that can be used to monitor progress on poverty reduction, inform targeted social programs, and guide longer-term economic planning."
)

# Post-processing: prune acronyms and self-relations

labels = ['named dataset', 'unnamed dataset', 'vague dataset']
rels = ['acronym', 'author', 'data description',\
        'data geography', 'data source', 'data type',\
        'publication year', 'publisher', 'reference year', 'version']

TYPE2RELS = {
    "named dataset":   rels,
    "unnamed dataset": rels,
    "vague dataset":   rels,
}

def inference_pipeline(
    text: str,
    model,
    labels: List[str],
    relation_extractor: GLiNERRelationExtractor,
    TYPE2RELS: Dict[str, List[str]],
    ner_threshold: float = 0.5,
    re_threshold: float = 0.4,
    re_multi_label: bool = False,
) -> Tuple[List[Dict[str, Any]], Dict[str, List[Dict[str, Any]]]]:
    ner_preds = model.predict_entities(
        text,
        labels,
        flat_ner=True,
        threshold=ner_threshold
    )

    re_results: Dict[str, List[Dict[str, Any]]] = {}
    for ner in ner_preds:
        span       = ner['text']
        rel_types  = TYPE2RELS.get(ner['label'], [])
        if not rel_types:
            continue

        slot_labels = [f"{span} <> {r}" for r in rel_types]

        preds = relation_extractor(
            text,
            relations=None,
            entities=None,
            relation_labels=slot_labels,
            threshold=re_threshold,
            multi_label=re_multi_label,
            distance_threshold=100,
        )[0]

        re_results[span] = preds

    return ner_preds, re_results

def prune_acronym_and_self_relations(ner_preds, rel_preds):
    # 1) Find acronym targets strictly shorter than their source
    acronym_targets = {
        r["target"]
        for src, rels in rel_preds.items()
        for r in rels
        if r["relation"] == "acronym" and len(r["target"]) < len(src)
    }

    # 2) Filter NER: drop any named-dataset whose text is in that set
    filtered_ner = [
        ent for ent in ner_preds
        if not (ent["label"] == "named dataset" and ent["text"] in acronym_targets)
    ]

    # 3) Filter RE: drop blocks for acronym sources, and self-relations
    filtered_re = {}
    for src, rels in rel_preds.items():
        if src in acronym_targets:
            continue
        kept = [r for r in rels if r["target"] != src]
        if kept:
            filtered_re[src] = kept

    return filtered_ner, filtered_re

# Highlighting function

def highlight_text(text, ner_threshold, re_threshold):
    # Run inference
    ner_preds, rel_preds = inference_pipeline(
        text,
        model=model,
        labels=labels,
        relation_extractor=relation_extractor,
        TYPE2RELS=TYPE2RELS,
        ner_threshold=ner_threshold,
        re_threshold=re_threshold,
        re_multi_label=False
    )

    # Post-process
    ner_preds, rel_preds = prune_acronym_and_self_relations(ner_preds, rel_preds)

    # Gather all spans
    spans = []
    for ent in ner_preds:
        spans.append((ent["start"], ent["end"], ent["label"]))
    for src, rels in rel_preds.items():
        for r in rels:
            for m in re.finditer(re.escape(r["target"]), text):
                spans.append((m.start(), m.end(), f"{src} <> {r['relation']}"))

    # Merge labels by span
    merged = defaultdict(list)
    for start, end, lbl in spans:
        merged[(start, end)].append(lbl)

    # Build Gradio entities
    entities = []
    for (start, end), lbls in sorted(merged.items(), key=lambda x: x[0]):
        entities.append({
            "entity": ", ".join(lbls),
            "start": start,
            "end": end
        })

    return {"text": text, "entities": entities}

# JSON output function

def get_model_predictions(text, ner_threshold, re_threshold):
    ner_preds, rel_preds = inference_pipeline(
        text,
        model=model,
        labels=labels,
        relation_extractor=relation_extractor,
        TYPE2RELS=TYPE2RELS,
        ner_threshold=ner_threshold,
        re_threshold=re_threshold,
        re_multi_label=False
    )
    ner_preds, rel_preds = prune_acronym_and_self_relations(ner_preds, rel_preds)
    return json.dumps({"ner": ner_preds, "relations": rel_preds}, indent=2)

# Build Gradio UI
demo = gr.Blocks()
with demo:
    gr.Markdown("## Data Use Detector\n"
                "Adjust the sliders below to set thresholds, then:\n"
                "- **Submit** to highlight entities.\n"
                "- **Get Model Predictions** to see the raw JSON output.")

    txt_in = gr.Textbox(
        label="Input Text",
        lines=4,
        value=SAMPLE_TEXT
    )

    ner_slider = gr.Slider(
        0, 1, value=0.7, step=0.01,
        label="NER Threshold",
        info="Minimum confidence for named-entity spans."
    )
    re_slider = gr.Slider(
        0, 1, value=0.5, step=0.01,
        label="RE Threshold",
        info="Minimum confidence for relation extractions."
    )

    highlight_btn = gr.Button("Submit")
    txt_out = gr.HighlightedText(label="Annotated Entities")

    get_pred_btn = gr.Button("Get Model Predictions")
    ner_rel_box = gr.Textbox(label="Model Predictions (JSON)", lines=15)

    # Wire up interactions
    highlight_btn.click(
        fn=highlight_text,
        inputs=[txt_in, ner_slider, re_slider],
        outputs=txt_out
    )
    get_pred_btn.click(
        fn=get_model_predictions,
        inputs=[txt_in, ner_slider, re_slider],
        outputs=ner_rel_box
    )

    # Enable queue for concurrency
    demo.queue(default_concurrency_limit=5)

# Launch the app

demo.launch(debug=True)