rafmacalaba's picture
use ner and rel
cd683ff
raw
history blame
3.67 kB
import re
import gradio as gr
# Your actual model outputs:
ner = [
{
'start': 12,
'end': 30,
'text': 'Home Visits Survey',
'label': 'named dataset',
'score': 0.9947463870048523
}
]
relations = {
'Home Visits Survey': [
{'source': 'Home Visits Survey', 'relation': 'data geography', 'target': 'Jordan', 'score': 0.6180844902992249},
{'source': 'Home Visits Survey', 'relation': 'version', 'target': 'Round II', 'score': 0.9688164591789246},
{'source': 'Home Visits Survey', 'relation': 'acronym', 'target': 'HV', 'score': 0.9140607714653015},
{'source': 'Home Visits Survey', 'relation': 'author', 'target': 'UNHCR', 'score': 0.7762154340744019},
{'source': 'Home Visits Survey', 'relation': 'author', 'target': 'World Food Programme', 'score': 0.6582539677619934},
{'source': 'Home Visits Survey', 'relation': 'reference year', 'target': '2013', 'score': 0.524115264415741},
{'source': 'Home Visits Survey', 'relation': 'publication year', 'target': '2014', 'score': 0.6853994131088257},
{'source': 'Home Visits Survey', 'relation': 'data description', 'target': 'detailed socio-economic, health, and protection data', 'score': 0.6544178128242493},
]
}
# The sample sentence you want to highlight:
SAMPLE_TEXT = (
"The Jordan Home Visits Survey, Round II (HV), was carried out by UNHCR and the World Food "
"Programme between November 2013 and September 2014. Through in-home visits to Syrian refugee "
"households in Jordan, it gathered detailed socio-economic, health, and protection data—each "
"household tagged with a unique ID to allow longitudinal tracking."
)
def highlight_text(text):
entities = []
# 1) NER spans
for ent in ner:
entities.append({
"entity": ent["label"],
"start": ent["start"],
"end": ent["end"],
})
# 2) RE spans: annotate each target with its relation label
for src, rels in relations.items():
for r in rels:
label = r["relation"]
target = r["target"]
for m in re.finditer(re.escape(target), text):
entities.append({
"entity": label,
"start": m.start(),
"end": m.end(),
})
return {"text": text, "entities": entities}
with gr.Blocks() as demo:
gr.Markdown("## Data Use Detector\n"
"Input text and the model will highlight the entities it detects.")
txt_in = gr.Textbox(label="Input Text", lines=4, value=SAMPLE_TEXT)
btn = gr.Button("Highlight Entities")
txt_out = gr.HighlightedText(label="Annotated Entities")
btn.click(fn=highlight_text, inputs=txt_in, outputs=txt_out)
txt_in.submit(fn=highlight_text, inputs=txt_in, outputs=txt_out)
demo.load(fn=highlight_text, inputs=txt_in, outputs=txt_out)
gr.Markdown("""
**Legend**
- **named dataset** → Home Visits Survey
- **data geography** → Jordan
- **version** → Round II
- **acronym** → HV
- **author** → UNHCR, World Food Programme
- **reference year** → 2013
- **publication year** → 2014
- **data description** → detailed socio-economic, health, and protection data
""")
if __name__ == "__main__":
demo.launch()