rafmacalaba commited on
Commit
2222dbb
·
1 Parent(s): 593f17e

add markdown

Browse files
Files changed (1) hide show
  1. app.py +5 -7
app.py CHANGED
@@ -171,24 +171,22 @@ def _cached_predictions(state):
171
 
172
  with gr.Blocks() as demo:
173
  gr.Markdown("""# Data Use Detector
174
-
175
  This Space demonstrates our fine-tuned GLiNER model’s ability to spot **dataset mentions** and **relations** in any input text. It identifies dataset names via NER, then extracts relations such as **publisher**, **acronym**, **publication year**, **data geography**, and more.
176
-
177
- ---
178
-
179
  **How it works**
180
  1. **NER**: Recognizes dataset names in your text.
181
  2. **RE**: Links each dataset to its attributes (e.g., publisher, year, acronym).
182
  3. **Visualization**: Highlights entities and relation spans inline.
183
-
184
  **Instructions**
185
  1. Paste or edit your text in the box below.
186
  2. Tweak the **NER** & **RE** confidence sliders.
187
  3. Click **Submit** to see highlights.
188
  4. Click **Get Model Predictions** to view the raw JSON output.
189
-
190
  **Resources**
191
- - **Model:** `rafmacalaba/gliner_re_finetuned-v3`
192
  - **Paper:** _Large Language Models and Synthetic Data for Monitoring Dataset Mentions in Research Papers_ – ArXiv: [2502.10263](https://arxiv.org/pdf/2502.10263)
193
  - [GLiNER GitHub Repo](https://github.com/urchade/GLiNER)
194
  - [Project Docs](https://worldbank.github.io/ai4data-use/docs/introduction.html)
 
171
 
172
  with gr.Blocks() as demo:
173
  gr.Markdown("""# Data Use Detector
174
+
175
  This Space demonstrates our fine-tuned GLiNER model’s ability to spot **dataset mentions** and **relations** in any input text. It identifies dataset names via NER, then extracts relations such as **publisher**, **acronym**, **publication year**, **data geography**, and more.
176
+
 
 
177
  **How it works**
178
  1. **NER**: Recognizes dataset names in your text.
179
  2. **RE**: Links each dataset to its attributes (e.g., publisher, year, acronym).
180
  3. **Visualization**: Highlights entities and relation spans inline.
181
+
182
  **Instructions**
183
  1. Paste or edit your text in the box below.
184
  2. Tweak the **NER** & **RE** confidence sliders.
185
  3. Click **Submit** to see highlights.
186
  4. Click **Get Model Predictions** to view the raw JSON output.
187
+
188
  **Resources**
189
+ - **Model:** [rafmacalaba/gliner_re_finetuned-v3](https://huggingface.co/rafmacalaba/gliner_re_finetuned-v3)
190
  - **Paper:** _Large Language Models and Synthetic Data for Monitoring Dataset Mentions in Research Papers_ – ArXiv: [2502.10263](https://arxiv.org/pdf/2502.10263)
191
  - [GLiNER GitHub Repo](https://github.com/urchade/GLiNER)
192
  - [Project Docs](https://worldbank.github.io/ai4data-use/docs/introduction.html)