from datetime import datetime from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_parse import LlamaParse from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI import os from dotenv import load_dotenv import gradio as gr import markdowm as md import base64 # Load environment variables load_dotenv() llm_models = [ "mistralai/Mixtral-8x7B-Instruct-v0.1", "meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2", "tiiuae/falcon-7b-instruct", ] embed_models = [ "BAAI/bge-small-en-v1.5", # 33.4M "NeuML/pubmedbert-base-embeddings", "BAAI/llm-embedder", # 109M "BAAI/bge-large-en" # 335M ] # Global variable for selected model selected_llm_model_name = llm_models[0] # Default to the first model in the list selected_embed_model_name = embed_models[0] # Default to the first model in the list vector_index = None # Initialize the parser parser = LlamaParse(api_key=os.getenv("LLAMA_INDEX_API"), result_type='markdown') # Define file extractor with various common extensions file_extractor = { '.pdf': parser, # PDF documents '.docx': parser, # Microsoft Word documents '.doc': parser, # Older Microsoft Word documents '.txt': parser, # Plain text files '.csv': parser, # Comma-separated values files '.xlsx': parser, # Microsoft Excel files (requires additional processing for tables) '.pptx': parser, # Microsoft PowerPoint files (for slides) '.html': parser, # HTML files (web pages) # Image files for OCR processing '.jpg': parser, # JPEG images '.jpeg': parser, # JPEG images '.png': parser, # PNG images # Scanned documents in image formats '.webp': parser, # WebP images '.svg': parser, # SVG files (vector format, may contain embedded text) } # File processing function def load_files(file_path: str, embed_model_name: str): try: global vector_index document = SimpleDirectoryReader(input_files=[file_path], file_extractor=file_extractor).load_data() embed_model = HuggingFaceEmbedding(model_name=embed_model_name) vector_index = VectorStoreIndex.from_documents(document, embed_model=embed_model) print(f"Parsing done for {file_path}") filename = os.path.basename(file_path) return f"Ready to give response on {filename}" except Exception as e: return f"An error occurred: {e}" # Function to handle the selected model from dropdown def set_llm_model(selected_model): global selected_llm_model_name selected_llm_model_name = selected_model # Update the global variable # print(f"Model selected: {selected_model_name}") # return f"Model set to: {selected_model_name}" # Respond function that uses the globally set selected model def respond(message, history): try: # Initialize the LLM with the selected model llm = HuggingFaceInferenceAPI( model_name=selected_llm_model_name, contextWindow=8192, # Context window size (typically max length of the model) maxTokens=1024, # Tokens per response generation (512-1024 works well for detailed answers) temperature=0.3, # Lower temperature for more focused answers (0.2-0.4 for factual info) topP=0.9, # Top-p sampling to control diversity while retaining quality frequencyPenalty=0.5, # Slight penalty to avoid repetition presencePenalty=0.5, # Encourages exploration without digressing too much token=os.getenv("TOKEN") ) # Set up the query engine with the selected LLM query_engine = vector_index.as_query_engine(llm=llm) bot_message = query_engine.query(message) print(f"\n{datetime.now()}:{selected_llm_model_name}:: {message} --> {str(bot_message)}\n") return f"{selected_llm_model_name}:\n{str(bot_message)}" except Exception as e: if str(e) == "'NoneType' object has no attribute 'as_query_engine'": return "Please upload a file." return f"An error occurred: {e}" def encode_image(image_path): with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode('utf-8') # UI Setup with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Roboto Mono")]), css='footer {visibility: hidden}') as demo: gr.Markdown("") with gr.Tabs(): with gr.TabItem("Introduction"): gr.Markdown(md.description) with gr.TabItem("Chatbot"): with gr.Accordion("IMPORTANT: READ ME FIRST", open=False): guid = gr.Markdown(md.guide) with gr.Row(): with gr.Column(scale=1): file_input = gr.File(file_count="single", type='filepath', label="Upload document") # gr.Markdown("Dont know what to select check out in Intro tab") embed_model_dropdown = gr.Dropdown(embed_models, label="Select Embedding", interactive=True) with gr.Row(): btn = gr.Button("Submit", variant='primary') clear = gr.ClearButton() output = gr.Text(label='Vector Index') llm_model_dropdown = gr.Dropdown(llm_models, label="Select LLM", interactive=True) with gr.Column(scale=3): gr.ChatInterface( fn=respond, chatbot=gr.Chatbot(height=500), theme = "soft", show_progress='full', # cache_mode='lazy', textbox=gr.Textbox(placeholder="Ask me any questions on the uploaded document!", container=False) ) # Set up Gradio interactions llm_model_dropdown.change(fn=set_llm_model, inputs=llm_model_dropdown) btn.click(fn=load_files, inputs=[file_input, embed_model_dropdown], outputs=output) clear.click(lambda: [None] * 3, outputs=[file_input, embed_model_dropdown, output]) # Launch the demo with a public link option if __name__ == "__main__": demo.launch()