Spaces:
Sleeping
Sleeping
File size: 44,667 Bytes
9dd777e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 |
""" Curation utilities for PROTAC Splitter. """
import os
import re
from typing import Any, Dict, Optional, Union, Callable
from joblib import Parallel, delayed
from rdkit import Chem
from rdkit.Chem import DataStructs
import pandas as pd
import numpy as np
from tqdm import tqdm
from protac_splitter.chemoinformatics import (
canonize,
remove_dummy_atoms,
canonize_smiles,
get_mol_id,
get_substr_match,
)
from protac_splitter.evaluation import check_reassembly
from protac_splitter.data.curation.substructure_extraction import (
get_substructure_from_non_perfect_match,
get_substructs_from_unmapped_e3_poi,
get_substructs_from_substr_and_linker,
get_substructs_from_mapped_linker,
swap_attachment_points,
)
from protac_splitter.data.curation.bond_adjustments import (
adjust_amide_bonds_in_substructs,
adjust_ester_bonds_in_substructs,
)
from protac_splitter.data.curation.mapping_utils import update_dictionary
def check_substructs_size(
protac_mol: Chem.Mol,
substructs: Dict[str, str],
size_perc_threshold: float = 0.8,
) -> bool:
""" Check the size of the substructures in the PROTAC. If any of them is too big, return False.
Args:
protac_mol: The PROTAC molecule.
substructs: The substructures to check against.
Returns:
False if any of the substructures is too big. True otherwise.
"""
num_protac_atoms = protac_mol.GetNumAtoms()
for key, smiles in substructs.items():
substruct = Chem.MolFromSmiles(smiles)
num_substruct_atoms = substruct.GetNumAtoms()
if num_substruct_atoms / num_protac_atoms > size_perc_threshold:
# print(f'Error: {key.upper()} is too big in the PROTAC ({num_substruct_atoms} / {num_protac_atoms} = {num_substruct_atoms / num_protac_atoms:.2%} > {size_perc_threshold:.2%})')
# display_mol(substruct)
# display_mol(protac_mol)
return False
return True
def check_linker_similarity(
linker_smiles: str,
pois: Union[pd.DataFrame, str],
e3s: Union[pd.DataFrame, str],
linkers: Optional[Union[pd.DataFrame, str]] = None,
pois_similarity_threshold: float = 0.7,
e3s_similarity_threshold: float = 0.7,
linkers_similarity_threshold: float = 0.6,
morgan_fp_generator: Optional[Callable] = None,
) -> bool:
""" Check the similarity of the linker with all the matching POIs and E3s. If too similar to any of them, return False.
Args:
linker_smiles: The linker SMILES.
pois: The POI ligands. Must have a 'FP' column with the Morgan fingerprints.
e3s: The E3 binders. Must have a 'FP' column with the Morgan fingerprints.
pois_similarity_threshold: The similarity threshold for the POIs.
e3s_similarity_threshold: The similarity threshold for the E3s.
morgan_fp_generator: The Morgan fingerprint generator.
Returns:
False if the linker is too similar to any of the POIs or E3s. True otherwise.
"""
# Get the linker fingerprint
if morgan_fp_generator is None:
morgan_fp_generator = Chem.rdFingerprintGenerator.GetMorganGenerator(
radius=2,
fpSize=2048,
useBondTypes=True,
includeChirality=True,
)
linker = Chem.MolFromSmiles(linker_smiles)
linker_fp = morgan_fp_generator.GetFingerprint(linker)
# Check the similarity of the linker with the POIs and E3s (use BulkTanimotoSimilarity)
if isinstance(e3s, str):
# Create a one-element list with the E3 fingerprint
e3s_fps = [morgan_fp_generator.GetFingerprint(Chem.MolFromSmiles(e3s))]
else:
e3s_fps = e3s['FP'].to_list()
e3s_similarities = DataStructs.BulkTanimotoSimilarity(linker_fp, e3s_fps)
if (np.array(e3s_similarities) > e3s_similarity_threshold).any():
print(f'WARNING: Linker {linker_smiles} is too similar to an E3 binder')
# display_mol(linker)
# display_mol(Chem.MolFromSmiles(e3s[e3s_similarities.argmax()]))
return False
# Check if the linker is similar to any of the POIs or E3s
if isinstance(pois, str):
# Create a one-element list with the POI fingerprint
pois_fps = [morgan_fp_generator.GetFingerprint(Chem.MolFromSmiles(pois))]
else:
pois_fps = pois['FP'].to_list()
pois_similarities = DataStructs.BulkTanimotoSimilarity(linker_fp, pois_fps)
if (np.array(pois_similarities) > pois_similarity_threshold).any():
# print(f'Error: Linker {linker_smiles} is too similar to a POI ligand')
# display_mol(linker)
# display_mol(Chem.MolFromSmiles(pois[pois_similarities.argmax()]))
return False
# Check if the linker is NOT similar to any of the linkers
if linkers is not None:
if isinstance(linkers, str):
# Create a one-element list with the linker fingerprint
linkers_fps = [morgan_fp_generator.GetFingerprint(Chem.MolFromSmiles(linkers))]
else:
linkers_fps = linkers['FP'].to_list()
linkers_similarities = DataStructs.BulkTanimotoSimilarity(linker_fp, linkers_fps)
if not (np.array(linkers_similarities) > linkers_similarity_threshold).all():
print(f'WARNING: Linker {linker_smiles} is too similar to a linker')
# display_mol(linker)
# display_mol(Chem.MolFromSmiles(linkers[linkers_similarities.argmax()]))
return False
return True
def check_substructs_similarity(
protac: Union[np.ndarray, str, Chem.Mol],
substructs: Dict[str, str],
similarity_threshold: float = 0.7,
similarity_thresholds : Dict[str, float] = None,
morgan_fp_generator: Optional[Callable] = None,
) -> bool:
""" Check the similarity of the PROTAC with the substructures. If too similar to any of them, return False.
Args:
protac: The PROTAC molecule or its SMILES.
substructs: The substructures to check against.
similarity_threshold: The similarity threshold.
similarity_thresholds: The similarity thresholds for the substructures.
morgan_fp_generator: The Morgan fingerprint generator.
Returns:
False if the PROTAC is too similar to any of the substructures. True otherwise.
"""
if morgan_fp_generator is None:
morgan_fp_generator = Chem.rdFingerprintGenerator.GetMorganGenerator(
radius=2,
fpSize=2048,
useBondTypes=True,
includeChirality=True,
)
if isinstance(protac, str):
protac = Chem.MolFromSmiles(protac)
protac_fp = morgan_fp_generator.GetFingerprint(protac)
elif isinstance(protac, Chem.Mol):
protac_fp = morgan_fp_generator.GetFingerprint(protac)
else:
protac_fp = protac
for key, smiles in substructs.items():
substr_fp = morgan_fp_generator.GetFingerprint(Chem.MolFromSmiles(smiles))
threshold = similarity_thresholds[key] if similarity_thresholds is not None else similarity_threshold
if DataStructs.TanimotoSimilarity(protac_fp, substr_fp) > threshold:
print(f'WARNING: {key.upper()} is too similar to the PROTAC, similarity: {DataStructs.TanimotoSimilarity(protac_fp, substr_fp):.4f} > {threshold}')
# display_mol(Chem.MolFromSmiles(smiles))
return False
return True
def get_split_row(
row: pd.Series,
substructs: Dict[str, str],
poi_smiles_no_dummy: Optional[str] = None,
e3_smiles_no_dummy: Optional[str] = None,
) -> Dict[str, Any]:
""" Update the fields of a row with the substructures and their IDs.
Args:
row: The input row.
dictionaries: The dictionaries containing the substructures.
substructs: The substructures found in the PROTAC.
poi_smiles_no_dummy: The POI ligand SMILES without the dummy atoms.
e3_smiles_no_dummy: The E3 binder SMILES without the dummy atoms.
update_dict_if_ids_not_found: Whether to update the dictionary if the substructure IDs are not found.
Returns:
The updated row.
"""
mapped_row = {}
mapped_row['PROTAC SMILES'] = canonize_smiles(row['SMILES'])
mapped_row['POI Ligand SMILES with direction'] = substructs['poi']
mapped_row['E3 Binder SMILES with direction'] = substructs['e3']
mapped_row['Linker SMILES with direction'] = substructs['linker']
mapped_row['POI Ligand SMILES'] = remove_dummy_atoms(substructs['poi']) if poi_smiles_no_dummy is None else poi_smiles_no_dummy
mapped_row['E3 Binder SMILES'] = remove_dummy_atoms(substructs['e3']) if e3_smiles_no_dummy is None else e3_smiles_no_dummy
mapped_row['Linker SMILES'] = remove_dummy_atoms(substructs['linker'])
# Get the IDs and update the dictionaries with new substructures
mapped_row['PROTAC ID'] = get_mol_id(mapped_row['PROTAC SMILES'])
mapped_row['POI Ligand ID'] = get_mol_id(mapped_row['POI Ligand SMILES with direction'])
mapped_row['E3 Binder ID'] = get_mol_id(mapped_row['E3 Binder SMILES with direction'])
mapped_row['Linker ID'] = get_mol_id(mapped_row['Linker SMILES with direction'])
return mapped_row
def split_single_protac(
row: pd.Series,
dictionaries: Dict[str, pd.DataFrame],
biggest_matches_first: bool = True,
max_iter_on_linkers: int = 0,
split_with_substr_and_linker_matching: bool = False,
similarity_threshold: float = 0.65,
morgan_radius: Optional[int] = None,
morgan_fp_size: Optional[int] = None,
morgan_fp_generator: Optional[Callable] = None,
poi_attachment_id: int = 1,
e3_attachment_id: int = 2,
) -> Dict[str, Any]:
""" Map a PROTAC row to the substructures in the dictionaries.
Args:
row: The input row, containing the PROTAC SMILES, ID, and molecule.
dictionaries: The dictionaries containing the substructures.
biggest_matches_first: Whether to sort the matches by the number of atoms in the molecule.
max_iter_on_linkers: The maximum number of iterations to perform on the linkers.
Returns:
The mapped row. None if the mapping was not successful.
"""
# # Disable the RDKit warnings that pop up when RDKit fails to create molecules
# # NOTE: The following is done to avoid warning messages during multiprocessing
# RDLogger.DisableLog("rdApp.*")
# blocker = rdBase.BlockLogs()
protac_smiles = row['SMILES']
protac_mol = row['Molecule']
if morgan_fp_generator is None:
morgan_radius = 2 if morgan_radius is None else morgan_radius
morgan_fp_size = 2048 if morgan_fp_size is None else morgan_fp_size
morgan_fp_generator = Chem.rdFingerprintGenerator.GetMorganGenerator(
radius=morgan_radius,
fpSize=morgan_fp_size,
useBondTypes=True,
includeChirality=True,
)
else:
morgan_radius = 'None'
morgan_fp_size = 'None'
protac_fp = morgan_fp_generator.GetFingerprint(protac_mol)
notes = f'({max_iter_on_linkers=})({split_with_substr_and_linker_matching=})({morgan_radius=})({morgan_fp_size=})'
# Get all substructure matches in the POI dictionary
# poi_matches = dictionaries['POI Ligand']['Molecule'].apply(lambda x: get_substr_match(protac_mol, x, num_allowed_fragments=1))
poi_matches = dictionaries['POI Ligand']['Molecule'].apply(lambda x: protac_mol.HasSubstructMatch(x))
pois = dictionaries['POI Ligand'][poi_matches].drop_duplicates(subset=['SMILES'])
# Get all substructure matches in the E3 dictionary
# e3_matches = dictionaries['E3 Binder']['Molecule'].apply(lambda x: get_substr_match(protac_mol, x, num_allowed_fragments=1))
e3_matches = dictionaries['E3 Binder']['Molecule'].apply(lambda x: protac_mol.HasSubstructMatch(x))
e3s = dictionaries['E3 Binder'][e3_matches].drop_duplicates(subset=['SMILES'])
# # Sort the matches by the number of atoms in the molecule
# ascending = False if biggest_matches_first else True
# pois = pois.sort_values(by='Molecule', key=lambda s: s.apply(lambda m: m.GetNumAtoms()), ascending=True)
# e3s = e3s.sort_values(by='Molecule', key=lambda s: s.apply(lambda m: m.GetNumAtoms()), ascending=True)
# Get the POI median, then re-arrenge the pois dataframe so that the median is the first element
poi_median = pois['Molecule'].apply(lambda x: x.GetNumAtoms()).median()
pois = pois.sort_values(by='Molecule', key=lambda s: s.apply(lambda m: m.GetNumAtoms()), ascending=True)
pois = pois.iloc[np.abs(pois['Molecule'].apply(lambda x: x.GetNumAtoms()) - poi_median).argsort()]
# Get the E3 median, then re-arrenge the e3s dataframe so that the median is the first element
e3_median = e3s['Molecule'].apply(lambda x: x.GetNumAtoms()).median()
e3s = e3s.sort_values(by='Molecule', key=lambda s: s.apply(lambda m: m.GetNumAtoms()), ascending=True)
e3s = e3s.iloc[np.abs(e3s['Molecule'].apply(lambda x: x.GetNumAtoms()) - e3_median).argsort()]
# If any of the substructures is not found, get the matching linkers to be
# used later (do it only once).
linkers = None
if len(pois) == 0 or len(e3s) == 0 or split_with_substr_and_linker_matching:
matches = dictionaries['Linker with direction']['Molecule'].apply(lambda x: get_substr_match(protac_mol, x, num_allowed_fragments=2))
linkers = dictionaries['Linker with direction'][matches]
linkers = linkers.sort_values(by='Molecule', key=lambda s: s.apply(lambda m: m.GetNumAtoms()), ascending=False)
# dummy_attachment_id = 1
# mapping_found = False
# for _, linker in linkers.iterrows():
# if mapping_found:
# break
# for _, poi in pois.iterrows():
# if mapping_found:
# break
# for _, e3 in e3s.iterrows():
# if mapping_found:
# break
# # Get the replace side chain
# e3_mapped = Chem.ReplaceSidechains(protac_mol, e3['Molecule'], useChirality=True)
# e3_mapped = rename_attachment_id(e3_mapped, dummy_attachment_id, e3_attachment_id)
# if e3_mapped is None:
# continue
# poi_mapped = Chem.ReplaceSidechains(protac_mol, poi['Molecule'], useChirality=True)
# poi_mapped = rename_attachment_id(poi_mapped, dummy_attachment_id, poi_attachment_id)
# if poi_mapped is None:
# continue
# # Join the substructures as fragments
# protac_candidate = canonize('.'.join([linker['SMILES'], e3_mapped, poi_mapped]))
# protac_candidate = Chem.MolFromSmiles(protac_candidate)
# protac_candidate = canonize(Chem.molzip(protac_candidate))
# if check_reassembly(protac_mol, protac_candidate):
# print('Found a match!')
# mapping_found = True
# # substructs = {
# # 'linker': linker['Molecule'],
# # 'e3': e3['Molecule'],
# # 'poi': poi['Molecule'],
# # }
# # mapped_row = get_split_row(row, dictionaries, substructs, poi['SMILES'], e3['SMILES'])
# # mapped_row['Notes'] = 'Obtained from matching E3, POI, and Linker found in dictionaries.'
# # return mapped_row
# TODO: Add a variable to get mapped ligands even if the checks failed... add a note when it happens
best_substructs_candidate = None
# There were matching E3s and matching POIs: try to recover the linker from
# an unmapped E3 and an unmapped POI.
if len(e3s) > 0 and len(pois) > 0:
for _, poi in pois.iterrows():
for _, e3 in e3s.iterrows():
additional_notes = '(matching_poi=True)(matching_e3=True)(matching_linker=None)'
substructs = get_substructs_from_unmapped_e3_poi(protac_smiles, protac_mol, poi['Molecule'], e3['Molecule'])
# If the substructure is not found, try to get it from a non-perfect match
if substructs is None:
fixed_poi = get_substructure_from_non_perfect_match(protac_mol, poi['Molecule'], poi_attachment_id)
fixed_e3 = get_substructure_from_non_perfect_match(protac_mol, e3['Molecule'], e3_attachment_id)
fixed_poi = poi['Molecule'] if fixed_poi is None else fixed_poi
fixed_e3 = e3['Molecule'] if fixed_e3 is None else fixed_e3
if fixed_poi is not None and fixed_e3 is not None:
substructs = get_substructs_from_unmapped_e3_poi(protac_smiles, protac_mol, fixed_poi, fixed_e3)
if Chem.MolToSmiles(fixed_e3) != e3['SMILES']:
additional_notes += '(non_perfect_e3_match=True)'
else:
additional_notes += '(non_perfect_e3_match=False)'
if Chem.MolToSmiles(fixed_poi) != poi['SMILES']:
additional_notes += '(non_perfect_poi_match=True)'
else:
additional_notes += '(non_perfect_poi_match=False)'
if substructs is not None:
size_check = check_substructs_size(protac_mol, substructs, size_perc_threshold=0.7)
# Check if the linker is too similar to any of the matching POIs or E3s (use the bulk Tanimoto similarity)
if not check_linker_similarity(substructs['linker'], pois, e3s, morgan_fp_generator=morgan_fp_generator, e3s_similarity_threshold=similarity_threshold, pois_similarity_threshold=similarity_threshold):
best_substructs_candidate = substructs
continue
if not size_check and not check_substructs_similarity(protac_fp, substructs, similarity_threshold=similarity_threshold, morgan_fp_generator=morgan_fp_generator):
best_substructs_candidate = substructs
# display_mol(protac_mol)
continue
# Fix the bonds close to amide and ester groups, if necessary
substructs_copy = substructs.copy()
substructs = adjust_amide_bonds_in_substructs(substructs, protac_smiles)
# Check and report if any SMILES was changed
if substructs['linker'] != substructs_copy['linker']:
additional_notes += '(amide_bonds_fixed=True)'
else:
additional_notes += '(amide_bonds_fixed=False)'
substructs_copy = substructs.copy()
substructs = adjust_ester_bonds_in_substructs(substructs, protac_smiles)
# Check and report if any SMILES was changed
if substructs['linker'] != substructs_copy['linker']:
additional_notes += '(ester_bonds_fixed=True)'
else:
additional_notes += '(ester_bonds_fixed=False)'
# Add the mapped PROTAC to the final list
mapped_row = get_split_row(row, substructs)
mapped_row['Notes'] = notes + additional_notes
return mapped_row
# There were no matching POIs, but some E3s and linkers matched: try to
# recover the E3 from an unmapped POI and a mapped Linker
if len(e3s) > 0 and split_with_substr_and_linker_matching: # len(pois) == 0 and
# NOTE: Only take the largest linker(s) into account
if max_iter_on_linkers:
selected_linkers = linkers.iloc[:max_iter_on_linkers, :]
else:
selected_linkers = linkers.iloc[:1, :]
for _, e3 in e3s.iterrows():
# Adjust the E3 molecule if it is not a perfect match
e3_mol_fixed = get_substructure_from_non_perfect_match(protac_mol, e3['Molecule'], e3_attachment_id)
e3_mol = e3['Molecule'] if e3_mol_fixed is None else e3_mol_fixed
e3_mol = remove_dummy_atoms(e3_mol)
if Chem.MolToSmiles(e3_mol) != e3['SMILES']:
non_perfect_e3_match = True
else:
non_perfect_e3_match = False
for _, linker in selected_linkers.iterrows():
additional_notes = f'(matching_poi=False)(matching_e3=True)(matching_linker=True)({non_perfect_e3_match=})'
substructs = get_substructs_from_substr_and_linker(
protac_smiles=protac_smiles,
protac=protac_mol,
substr=e3_mol,
linker=linker['Molecule'],
attachment_id=e3_attachment_id,
)
if substructs is not None:
size_check = check_substructs_size(protac_mol, substructs, size_perc_threshold=0.7)
if not check_linker_similarity(substructs['linker'], substructs['poi'], e3s, morgan_fp_generator=morgan_fp_generator, e3s_similarity_threshold=similarity_threshold, pois_similarity_threshold=similarity_threshold):
best_substructs_candidate = substructs
continue
if not size_check and not check_substructs_similarity(protac_fp, substructs, similarity_threshold=similarity_threshold, morgan_fp_generator=morgan_fp_generator):
best_substructs_candidate = substructs
# display_mol(protac_mol)
continue
# Fix the bonds close to amide and ester groups, if necessary
substructs_copy = substructs.copy()
substructs = adjust_amide_bonds_in_substructs(substructs, protac_smiles)
if substructs['linker'] != substructs_copy['linker']:
additional_notes += '(amide_bonds_fixed=True)'
else:
additional_notes += '(amide_bonds_fixed=False)'
substructs_copy = substructs.copy()
substructs = adjust_ester_bonds_in_substructs(substructs, protac_smiles)
if substructs['linker'] != substructs_copy['linker']:
additional_notes += '(ester_bonds_fixed=True)'
else:
additional_notes += '(ester_bonds_fixed=False)'
mapped_row = get_split_row(row, substructs)
mapped_row['Notes'] = notes + additional_notes
return mapped_row
# Swap the attachment points on the linker and try again
linker_swapped = swap_attachment_points(linker['SMILES'])
substructs = get_substructs_from_substr_and_linker(
protac_smiles=protac_smiles,
protac=protac_mol,
substr=e3_mol,
linker=Chem.MolFromSmiles(linker_swapped),
attachment_id=e3_attachment_id,
)
additional_notes += '(attachment_points_swapped_in_linker=True)'
if substructs is not None:
size_check = check_substructs_size(protac_mol, substructs, size_perc_threshold=0.7)
if not check_linker_similarity(substructs['linker'], substructs['poi'], e3s, morgan_fp_generator=morgan_fp_generator, e3s_similarity_threshold=similarity_threshold, pois_similarity_threshold=similarity_threshold):
continue
if not size_check and not check_substructs_similarity(protac_fp, substructs, similarity_threshold=similarity_threshold, morgan_fp_generator=morgan_fp_generator):
# display_mol(protac_mol)
continue
# Fix the bonds close to amide and ester groups, if necessary
substructs_copy = substructs.copy()
substructs = adjust_amide_bonds_in_substructs(substructs, protac_smiles)
if substructs['linker'] != substructs_copy['linker']:
additional_notes += '(amide_bonds_fixed=True)'
else:
additional_notes += '(amide_bonds_fixed=False)'
substructs_copy = substructs.copy()
substructs = adjust_ester_bonds_in_substructs(substructs, protac_smiles)
if substructs['linker'] != substructs_copy['linker']:
additional_notes += '(ester_bonds_fixed=True)'
mapped_row = get_split_row(row, substructs)
mapped_row['Notes'] = notes + additional_notes
return mapped_row
# There were no matching E3s, but some POIs and linkers matched: try to
# recover the POI from an unmapped E3 and a mapped Linker
if len(pois) > 0 and split_with_substr_and_linker_matching: # and len(e3s) == 0
# NOTE: Only take the largest linker(s) into account
if max_iter_on_linkers:
selected_linkers = linkers.iloc[:max_iter_on_linkers, :]
else:
selected_linkers = linkers.iloc[:1, :]
for _, poi in pois.iterrows():
poi_mol = get_substructure_from_non_perfect_match(protac_mol, poi['Molecule'], poi_attachment_id)
poi_mol = poi['Molecule'] if poi_mol is None else poi_mol
poi_mol = remove_dummy_atoms(poi_mol)
if Chem.MolToSmiles(poi_mol) != poi['SMILES']:
non_perfect_poi_match = True
else:
non_perfect_poi_match = False
for _, linker in selected_linkers.iterrows():
additional_notes = f'(matching_poi=True)(matching_e3=False)(matching_linker=True)({non_perfect_poi_match=})'
substructs = get_substructs_from_substr_and_linker(
protac_smiles=protac_smiles,
protac=protac_mol,
substr=poi_mol,
linker=linker['Molecule'],
attachment_id=poi_attachment_id,
)
if substructs is not None:
size_check = check_substructs_size(protac_mol, substructs, size_perc_threshold=0.7)
if not check_linker_similarity(substructs['linker'], pois, substructs['e3'], morgan_fp_generator=morgan_fp_generator, e3s_similarity_threshold=similarity_threshold, pois_similarity_threshold=similarity_threshold):
best_substructs_candidate = substructs
continue
if not size_check and not check_substructs_similarity(protac_fp, substructs, similarity_threshold=similarity_threshold, morgan_fp_generator=morgan_fp_generator):
best_substructs_candidate = substructs
# display_mol(protac_mol)
continue
# Fix the bonds close to amide and ester groups, if necessary
substructs_copy = substructs.copy()
substructs = adjust_amide_bonds_in_substructs(substructs, protac_smiles)
if substructs['linker'] != substructs_copy['linker']:
additional_notes += '(amide_bonds_fixed=True)'
substructs_copy = substructs.copy()
substructs = adjust_ester_bonds_in_substructs(substructs, protac_smiles)
if substructs['linker'] != substructs_copy['linker']:
additional_notes += '(ester_bonds_fixed=True)'
mapped_row = get_split_row(row, substructs)
mapped_row['Notes'] = notes + additional_notes
return mapped_row
# Swap the attachment points on the linker and try again
linker_swapped = swap_attachment_points(linker['SMILES'])
substructs = get_substructs_from_substr_and_linker(
protac_smiles=protac_smiles,
protac=protac_mol,
substr=poi_mol,
linker=Chem.MolFromSmiles(linker_swapped),
attachment_id=poi_attachment_id,
)
additional_notes += '(attachment_points_swapped_in_linker=True)'
if substructs is not None:
size_check = check_substructs_size(protac_mol, substructs, size_perc_threshold=0.7)
if not check_linker_similarity(substructs['linker'], substructs['poi'], e3s, morgan_fp_generator=morgan_fp_generator, e3s_similarity_threshold=similarity_threshold, pois_similarity_threshold=similarity_threshold):
best_substructs_candidate = substructs
continue
if not size_check and not check_substructs_similarity(protac_fp, substructs, similarity_threshold=similarity_threshold, morgan_fp_generator=morgan_fp_generator):
best_substructs_candidate = substructs
# display_mol(protac_mol)
continue
# Fix the bonds close to amide and ester groups, if necessary
substructs_copy = substructs.copy()
substructs = adjust_amide_bonds_in_substructs(substructs, protac_smiles)
if substructs['linker'] != substructs_copy['linker']:
additional_notes += '(amide_bonds_fixed=True)'
substructs_copy = substructs.copy()
substructs = adjust_ester_bonds_in_substructs(substructs, protac_smiles)
if substructs['linker'] != substructs_copy['linker']:
additional_notes += '(ester_bonds_fixed=True)'
mapped_row = get_split_row(row, substructs)
mapped_row['Notes'] = notes + additional_notes
return mapped_row
# Get all substructure matches in the Linker with direction dictionary
# NOTE: This code is repeated here for performance reasons, to avoid
# calculating the matches if not needed.
if linkers is None and max_iter_on_linkers:
matches = dictionaries['Linker with direction']['Molecule'].apply(lambda x: get_substr_match(protac_mol, x, num_allowed_fragments=2))
linkers = dictionaries['Linker with direction'][matches]
# Sort all the matches by the number of atoms in the linker, the biggest first
linkers = linkers.sort_values(by='Molecule', key=lambda s: s.apply(lambda m: m.GetNumAtoms()), ascending=False)
# for j, (_, linker) in enumerate(linkers.iterrows()):
# additional_notes = '(matching_poi=False)(matching_e3=False)(matching_linker=True)'
# if j >= max_iter_on_linkers or max_iter_on_linkers == 0:
# return None
for j in range(max_iter_on_linkers):
additional_notes = '(matching_poi=False)(matching_e3=False)(matching_linker=True)'
linker = linkers.iloc[j, :]
substructs = get_substructs_from_mapped_linker(protac_smiles, linker['SMILES'])
if substructs is not None:
if not check_linker_similarity(substructs['linker'], substructs['poi'], substructs['e3'], morgan_fp_generator=morgan_fp_generator, e3s_similarity_threshold=similarity_threshold, pois_similarity_threshold=similarity_threshold):
best_substructs_candidate = substructs
continue
size_check = check_substructs_size(protac_mol, substructs, size_perc_threshold=0.7)
if not size_check and not check_substructs_similarity(protac_fp, substructs, similarity_threshold=similarity_threshold, morgan_fp_generator=morgan_fp_generator):
best_substructs_candidate = substructs
# display_mol(protac_mol)
continue
# Fix the bonds close to amide and ester groups, if necessary
substructs_copy = substructs.copy()
substructs = adjust_amide_bonds_in_substructs(substructs, protac_smiles)
if substructs['linker'] != substructs_copy['linker']:
additional_notes += '(amide_bonds_fixed=True)'
substructs_copy = substructs.copy()
substructs = adjust_ester_bonds_in_substructs(substructs, protac_smiles)
if substructs['linker'] != substructs_copy['linker']:
additional_notes += '(ester_bonds_fixed=True)'
if not check_substructs_size(protac_mol, substructs, size_perc_threshold=0.95):
best_substructs_candidate = substructs
continue
mapped_row = get_split_row(row, substructs)
mapped_row['Notes'] = notes + additional_notes
return mapped_row
# If we are here, it means that the substructures found in the above loops
# failed the similarity checks. We add a note and return the best
# substructure candidate found.
if best_substructs_candidate is not None:
substructs_copy = substructs.copy()
substructs = adjust_amide_bonds_in_substructs(best_substructs_candidate, protac_smiles)
if substructs['linker'] != best_substructs_candidate['linker']:
notes += '(amide_bonds_fixed=True)'
substructs_copy = substructs.copy()
substructs = adjust_ester_bonds_in_substructs(substructs, protac_smiles)
if substructs['linker'] != substructs_copy['linker']:
notes += '(ester_bonds_fixed=True)'
mapped_row = get_split_row(row, substructs)
mapped_row['Notes'] = notes + '(similarity_checks_failed=True)'
return mapped_row
return None
def split_protacs(
protac_df: pd.DataFrame,
dictionaries: Dict[str, pd.DataFrame],
max_iter_on_linkers: int = 0,
split_with_substr_and_linker_matching: bool = False,
biggest_matches_first: bool = True,
update_dict_if_ids_not_found: bool = False,
use_multiprocessing: bool = False,
) -> pd.DataFrame:
""" Maps PROTACs to their substructures.
Args:
protac_df: The input PROTAC dataframe.
dictionaries: The input dictionaries.
max_iter_on_linkers: The maximum number of matching linkers to iterate over. If zero, there will be no attempt to match linkers in the dictionary. If negative, iterate over all matched linkers. Default is 0.
biggest_matches_first: Whether to sort the matches by the number of atoms in the molecule. Default is True.
update_dict_if_ids_not_found: DEPRECATED. Whether to update the dictionary if the substructure IDs are not found. Default is False.
use_multiprocessing: Whether to use multiprocessing. Default is False.
Returns:
The mapped PROTAC dataframe.
"""
# if use_multiprocessing:
# global split_single_protac
# with multiprocessing.Pool(processes=multiprocessing.cpu_count()) as pool:
# results = pool.map(partial(split_single_protac, dictionaries=dictionaries, biggest_matches_first=biggest_matches_first, max_iter_on_linkers=max_iter_on_linkers), protac_df.copy().to_dict(orient='records'))
# mapped_protacs = pd.DataFrame(results)
# mapped_protacs = mapped_protacs.dropna(subset=['POI Ligand SMILES with direction', 'E3 Binder SMILES with direction', 'Linker SMILES with direction'])
# return mapped_protacs
if use_multiprocessing:
# TODO: The following does run in parallel, but it gives wrong results. I don't know why. I will have to investigate further.
results = Parallel(n_jobs=-1)(delayed(split_single_protac)(row, dictionaries=dictionaries, biggest_matches_first=biggest_matches_first, max_iter_on_linkers=max_iter_on_linkers) for _, row in protac_df.iterrows())
mapped_protacs = pd.DataFrame([r for r in results if r is not None])
return mapped_protacs
mapped_protacs = []
for i, row in (pbar := tqdm(protac_df.iterrows(), total=len(protac_df))):
pbar.set_description(f'PROTAC n.{i:4d}')
r = split_single_protac(
row,
dictionaries,
biggest_matches_first=biggest_matches_first,
max_iter_on_linkers=max_iter_on_linkers,
split_with_substr_and_linker_matching=split_with_substr_and_linker_matching,
)
if r is not None:
mapped_protacs.append(r)
tmp = pd.DataFrame(mapped_protacs)
pbar.set_postfix({'len_mapped': len(tmp), 'perc_mapped': f'{len(tmp) / len(protac_df):.1%}'})
mapped_protacs = pd.DataFrame(mapped_protacs)
return mapped_protacs
def parse_notes(notes: str) -> Dict[str, Any]:
# Define the regex pattern to match key-value pairs within parentheses
pattern = r'\(([^=]+)=([^\)]+)\)'
# Find all matches in the string
matches = re.findall(pattern, notes)
# Initialize an empty dictionary to store the parsed key-value pairs
parsed_dict = {}
# Iterate over the matches and add them to the dictionary
for key, value in matches:
# Convert the value to the appropriate type (int, bool, None, or str)
if value.isdigit():
parsed_dict[key] = int(value)
elif value.lower() == 'true':
parsed_dict[key] = True
elif value.lower() == 'false':
parsed_dict[key] = False
elif value.lower() == 'none':
parsed_dict[key] = None
else:
parsed_dict[key] = value
return parsed_dict
def iterative_protac_splitting(
dictionaries: Dict[str, pd.DataFrame],
data_dir: str,
) -> Dict[str, pd.DataFrame]:
""" Map PROTACs to their substructures in an iterative way.
Args:
dictionaries: The input dictionaries. The same format as the output of the `update_dictionary` function.
data_dir: The directory where the output data is stored.
Returns:
The final mapped PROTAC dataframe.
"""
final_df = None
non_mapped_protacs = dictionaries['PROTAC'].copy()
start_from_beginning = True # Re-map all PROTACs ignoring loading previous results
step = -1
max_iter_on_linkers = 0
split_with_substr_and_linker_matching = False
while True:
if max_iter_on_linkers == -1 or non_mapped_protacs.empty or step >= 50:
break
if max_iter_on_linkers == 5:
max_iter_on_linkers = -1 # Iterate over all linkers
step += 1
print('-' * 100)
print(f'Step n.{step}')
print(f'Max iterations on linkers: {max_iter_on_linkers}')
print(f'Map with substr and linker matching: {split_with_substr_and_linker_matching}')
print('-' * 50)
step_filename = os.path.join(data_dir, f'mapped_protacs_{step=}.csv')
final_filename = os.path.join(data_dir, 'mapped_protacs.csv')
non_mapped_filename = os.path.join(data_dir, 'non_mapped_protacs.csv')
if os.path.exists(step_filename) and not start_from_beginning:
# Check if all lines of the file are empty
with open(step_filename, 'r') as f:
lines = f.readlines()
if all([len(line.strip()) == 0 for line in lines]):
mapped_protacs = pd.DataFrame()
else:
mapped_protacs = pd.read_csv(step_filename)
else:
mapped_protacs = split_protacs(
non_mapped_protacs,
dictionaries=dictionaries,
split_with_substr_and_linker_matching=split_with_substr_and_linker_matching,
max_iter_on_linkers=max_iter_on_linkers,
biggest_matches_first=False,
use_multiprocessing=False,
)
# Add a string at the end of the strings in the 'Notes' column
if not mapped_protacs.empty:
mapped_protacs['Notes'] = mapped_protacs['Notes'].apply(lambda x: f'{x}({step=})')
mapped_protacs.to_csv(step_filename, index=False)
# Update the final dataframe and save it to file
if final_df is None:
final_df = mapped_protacs
else:
final_df = pd.concat([final_df, mapped_protacs], axis=0).drop_duplicates(subset=['PROTAC SMILES'])
final_df.to_csv(final_filename, index=False)
print(f'All mapped PROTACs saved to: {final_filename}')
# Reporting information
mapped_perc = len(mapped_protacs) / len(non_mapped_protacs)
total_mapped_perc = len(final_df) / len(dictionaries['PROTAC'])
print(f'Number of mapped PROTACs: {len(mapped_protacs)} ({mapped_perc:.2%})')
print(f'Total num. of mapped PROTACs: {len(final_df)} ({total_mapped_perc:.2%})')
print('-' * 50)
print(final_df['Notes'].value_counts())
print('-' * 50)
# Get the non-mapped PROTACs yet and save them to file
non_mapped_protacs = dictionaries['PROTAC'][~dictionaries['PROTAC']['SMILES'].isin(final_df['PROTAC SMILES'])].copy()
non_mapped_protacs[['SMILES', 'ID']].to_csv(non_mapped_filename, index=False)
print(f'Non-mapped PROTACs saved to: {non_mapped_filename}')
# Control logic for breaking the loop
if mapped_protacs.empty:
if max_iter_on_linkers == 0 and not split_with_substr_and_linker_matching:
split_with_substr_and_linker_matching = True
continue
else:
max_iter_on_linkers += 1
continue
else:
# Using only the linker to map the PROTACs can be unreliable, so if we
# found new PROTACs, we should the max_iter_on_linkers to zero and try
# to map the PROTACs again with the newly found substructures.
max_iter_on_linkers = 0
split_with_substr_and_linker_matching = False
# Update all dictionaries with the substructures of the mapped PROTACs
smiles_list = mapped_protacs['Linker SMILES with direction'].unique()
smiles_list = [canonize(smiles) for smiles in smiles_list]
dictionaries['Linker with direction'] = update_dictionary(dictionaries['Linker with direction'], smiles_list)
# Avoid adding POIs that are in the E3 dictionary!
smiles_list = mapped_protacs['POI Ligand SMILES'].unique()
smiles_list = [canonize(smiles) for smiles in smiles_list]
smiles_list = [s for s in smiles_list if s not in dictionaries['E3 Binder']['SMILES'].values]
smiles_list = [remove_dummy_atoms(s) for s in smiles_list if s is not None]
# Use Tanimoto similarity to prevent adding POIs too similar to E3s
similarity_threshold = 0.5
radius = 2
nbits = 2048
morgan_fp_generator = Chem.rdFingerprintGenerator.GetMorganGenerator(radius=radius, fpSize=nbits, useBondTypes=True, includeChirality=True)
pois_to_add = []
for poi_smiles in smiles_list:
poi_mol = Chem.MolFromSmiles(poi_smiles)
poi_fp = morgan_fp_generator.GetFingerprint(poi_mol)
similarities = DataStructs.BulkTanimotoSimilarity(poi_fp, dictionaries['E3 Binder']['FP'].to_list())
skip_poi = False
for sim in similarities:
if sim >= similarity_threshold:
skip_poi = True
break
if not skip_poi:
pois_to_add.append(poi_smiles)
dictionaries['POI Ligand'] = update_dictionary(dictionaries['POI Ligand'], smiles_list)
# Avoid adding E3s that are in the POI dictionary!
smiles_list = mapped_protacs['E3 Binder SMILES'].unique()
smiles_list = [canonize(smiles) for smiles in smiles_list]
smiles_list = [s for s in smiles_list if s not in dictionaries['POI Ligand']['SMILES'].values]
smiles_list = [remove_dummy_atoms(s) for s in smiles_list if s is not None]
dictionaries['E3 Binder'] = update_dictionary(dictionaries['E3 Binder'], smiles_list)
# Save all dictionaries to file
for key, dictionary in dictionaries.items():
filename = os.path.join(data_dir, f'dictionary_{key.lower().replace(" ", "_")}.csv')
dictionary[['ID', 'SMILES']].to_csv(filename, index=False)
print(f'Dictionary saved to: {filename}')
return dictionaries |