File size: 11,832 Bytes
9dd777e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import os
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, List, Optional

import pandas as pd
import numpy as np
from tqdm import tqdm
from rdkit import Chem

from protac_splitter.evaluation import check_reassembly


def generate_protacs(
        poi_fg_distr: Dict[str, float],
        e3_fg_distr: Dict[str, float],
        substr_fg_2_linker: Dict[str, List[str]],
        poi_fg_2_substr: Dict[str, List[str]],
        e3_fg_2_substr: Dict[str, List[str]],
        num_samples: int,
        random_state: int = 42,
        batch_size: int = 1000,
        max_workers: int = 4,
        original_df: Optional[pd.DataFrame] = None,
        filename_generated_df: Optional[str] = None,
        base_data_dir: Optional[str] = None,
        cover_all_smiles: bool = False,
) -> pd.DataFrame:
    """ Generate PROTACs given the distributions of functional groups at attachment points.
    
    Args:
        poi_fg_distr: The distribution of functional groups at the POI attachment point.
        e3_fg_distr: The distribution of functional groups at the E3 attachment point.
        substr_fg_2_linker: The mapping of functional groups to linkers.
        poi_fg_2_substr: The mapping of functional groups to POI substrates.
        e3_fg_2_substr: The mapping of functional groups to E3 substrates.
        num_samples: The number of PROTACs to generate.
        random_state: The random state for reproducibility.
        batch_size: The batch size for generating PROTACs.
        max_workers: The maximum number of workers for the ThreadPoolExecutor.
        original_df: The original DataFrame containing the PROTACs. Must have a
                     column named 'PROTAC SMILES' containing the strings to
                     avoid generating. The check is done on strings, so make
                     sure to canonize/standardize the SMILES strings.
        filename_generated_df: The filename to save the generated PROTACs.

    Returns:
        pd.DataFrame: The DataFrame containing the generated PROTACs.
    """

    np.random.seed(random_state)
    final_df = pd.DataFrame()
    total_batches = int(np.ceil(num_samples / batch_size))

    def generate_protac_batch(batch_size: int, random_state: int) -> List[dict]:
        np.random.seed(random_state)

        # Sample functional groups for POI and E3
        poi_fgs = np.random.choice(list(poi_fg_distr.keys()), size=batch_size, p=list(poi_fg_distr.values()))
        e3_fgs = np.random.choice(list(e3_fg_distr.keys()), size=batch_size, p=list(e3_fg_distr.values()))

        # Map functional groups to corresponding substrates
        # NOTE: When size argument is specified, the output is a numpy array.
        # NOTE: If the functional group is not in the dictionary, the output is an empty numpy array.
        poi_samples = [
            np.random.choice(poi_fg_2_substr.get(fg, []), size=1 if fg in poi_fg_2_substr and poi_fg_2_substr[fg] else 0)
            for fg in poi_fgs
        ]
        e3_samples = [
            np.random.choice(e3_fg_2_substr.get(fg, []), size=1 if fg in e3_fg_2_substr and e3_fg_2_substr[fg] else 0)
            for fg in e3_fgs
        ]

        generated_protacs = []

        for poi_smiles, poi_fg, e3_smiles, e3_fg in zip(poi_samples, poi_fgs, e3_samples, e3_fgs):
            # Check if poi_smiles and e3_smiles are not an empty numpy array
            if poi_smiles.size == 0 or e3_smiles.size == 0:
                continue

            # Convert the numpy arrays to strings
            poi_smiles, e3_smiles = poi_smiles[0], e3_smiles[0]
            
            linkers = set(substr_fg_2_linker.get(poi_fg, [])) & set(substr_fg_2_linker.get(e3_fg, []))
            if not linkers:
                continue

            linker_smiles = np.random.choice(list(linkers))

            # Get the PROTAC by combining the POI, linker, and E3
            ligands_smiles = '.'.join([poi_smiles, linker_smiles, e3_smiles])
            protac = Chem.MolFromSmiles(ligands_smiles)

            if protac is None:
                continue
            try:
                protac = Chem.molzip(protac)
            except:
                continue

            # Sanitize molecule
            try:
                zero_on_success = Chem.SanitizeMol(protac, catchErrors=True)
                if zero_on_success != 0:
                    continue
                protac_smiles = Chem.MolToSmiles(protac, canonical=True)
            except:
                continue

            if original_df is not None and protac_smiles in original_df['PROTAC SMILES'].values:
                continue
            
            # Check if PROTAC can be reassembled
            if not check_reassembly(protac_smiles, ligands_smiles):
                continue

            generated_protacs.append({
                'PROTAC SMILES': protac_smiles,
                'POI Ligand SMILES with direction': poi_smiles,
                'Linker SMILES with direction': linker_smiles,
                'E3 Binder SMILES with direction': e3_smiles,
                'POI Ligand Functional Group': poi_fg,
                'E3 Binder Functional Group': e3_fg,
            })

        return generated_protacs

    with ThreadPoolExecutor(max_workers=max_workers) as executor:
        futures = []
        for i in tqdm(range(total_batches), desc="Generating Batches"):
            futures.append(executor.submit(generate_protac_batch, batch_size, random_state + i))

        for i, future in tqdm(enumerate(futures), desc="Processing Results", total=total_batches):
            generated_batch = future.result()
            if generated_batch:
                batch_df = pd.DataFrame(generated_batch)
                final_df = pd.concat([final_df, batch_df]).drop_duplicates()
                if i % 100 == 0:
                    if base_data_dir:
                        batch_df.to_csv(os.path.join(base_data_dir, f'generated_protacs_batch={i}.csv'), index=False)
                    else:
                        batch_df.to_csv(f'generated_protacs_batch={i}.csv', index=False)
                    if filename_generated_df:
                        final_df.to_csv(filename_generated_df, index=False)
                if len(final_df) >= num_samples:
                    break

        if not final_df.empty:
            generated_pois = set(final_df['POI Ligand SMILES with direction'].unique())
            generated_e3s = set(final_df['E3 Binder SMILES with direction'].unique())
            generated_linkers = set(final_df['Linker SMILES with direction'].unique())
        else:
            generated_pois = set()
            generated_e3s = set()
            generated_linkers = set()

        # Check how we covered the available substructures
        avail_pois = set()
        avail_e3s = set()
        avail_linkers = set()
        for fg in poi_fg_2_substr:
            avail_pois.update(set(poi_fg_2_substr[fg]))
        for fg in e3_fg_2_substr:
            avail_e3s.update(set(e3_fg_2_substr[fg]))
        for fg in substr_fg_2_linker:
            avail_linkers.update(set(substr_fg_2_linker[fg]))
            
        e3_coverage = len(generated_e3s) / len(avail_e3s)
        poi_coverage = len(generated_pois) / len(avail_pois)
        linker_coverage = len(generated_linkers) / len(avail_linkers)

        print(f"POI coverage:    {poi_coverage:.3%}")
        print(f"E3 coverage:     {e3_coverage:.3%}")
        print(f"Linker coverage: {linker_coverage:.3%}")
        
        # Get the "leftover" ligands
        leftover_pois = avail_pois - generated_pois
        leftover_e3s = avail_e3s - generated_e3s
        leftover_linkers = avail_linkers - generated_linkers
        
        covering_df = []

        with tqdm(total=len(leftover_pois) + len(leftover_e3s) + len(leftover_linkers), desc="Covering Leftover Ligands") as pbar:
            while True:
                if not cover_all_smiles:
                    break

                # Randomly select a POI, E3, and linker
                if not leftover_pois:
                    pois_to_sample = avail_pois
                else:
                    pois_to_sample = leftover_pois
                if not leftover_e3s:
                    e3s_to_sample = avail_e3s
                else:
                    e3s_to_sample = leftover_e3s
                if not leftover_linkers:
                    linkers_to_sample = avail_linkers
                else:
                    linkers_to_sample = leftover_linkers

                poi_smiles = np.random.choice(list(pois_to_sample))
                e3_smiles = np.random.choice(list(e3s_to_sample))
                linker_smiles = np.random.choice(list(linkers_to_sample))
                
                # Get the PROTAC by combining the POI, linker, and E3
                ligands_smiles = '.'.join([poi_smiles, linker_smiles, e3_smiles])
                protac = Chem.MolFromSmiles(ligands_smiles)
                if protac is None:
                    continue
                try:
                    protac = Chem.molzip(protac)
                except:
                    continue
                
                # Sanitize molecule
                try:
                    zero_on_success = Chem.SanitizeMol(protac, catchErrors=True)
                    if zero_on_success != 0:
                        continue
                    protac_smiles = Chem.MolToSmiles(protac, canonical=True)
                except:
                    continue
                
                if original_df is not None and protac_smiles in original_df['PROTAC SMILES'].values:
                    continue
                
                # Check if PROTAC can be reassembled
                if not check_reassembly(protac_smiles, ligands_smiles):
                    continue
                
                covering_df.append({
                    'PROTAC SMILES': protac_smiles,
                    'POI Ligand SMILES with direction': poi_smiles,
                    'Linker SMILES with direction': linker_smiles,
                    'E3 Binder SMILES with direction': e3_smiles,
                    'POI Ligand Functional Group': None,
                    'E3 Binder Functional Group': None,
                })
                
                generated_pois.add(poi_smiles)
                generated_e3s.add(e3_smiles)
                generated_linkers.add(linker_smiles)
                
                ligands_added = 0
                if poi_smiles in leftover_pois:
                    leftover_pois.remove(poi_smiles)
                    ligands_added += 1
                if e3_smiles in leftover_e3s:
                    leftover_e3s.remove(e3_smiles)
                    ligands_added += 1
                if linker_smiles in leftover_linkers:
                    leftover_linkers.remove(linker_smiles)
                    ligands_added += 1
                
                e3_coverage = len(generated_e3s) / len(avail_e3s)
                poi_coverage = len(generated_pois) / len(avail_pois)
                linker_coverage = len(generated_linkers) / len(avail_linkers)

                # Update the pbar and write the coverage
                pbar.update(ligands_added)
                pbar.set_postfix({
                    'POI': f"{poi_coverage:.2%}",
                    'E3': f"{e3_coverage:.2%}",
                    'Linker': f"{linker_coverage:.2%}",
                })
                
                if not leftover_pois and not leftover_e3s and not leftover_linkers:
                    break

        final_df = pd.concat([final_df, pd.DataFrame(covering_df)]).drop_duplicates()

    # Save to file if specified
    if filename_generated_df:
        final_df.to_csv(filename_generated_df, index=False)
        print(f"Generated PROTACs saved to: {filename_generated_df}")

    return final_df