File size: 21,784 Bytes
9dd777e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
""" Evaluation functions for the protac_splitter package. They need to be generic to accomodate predictions coming from different models. """

import math
import re
import logging
from typing import Tuple, Any, Dict, Optional, Union

import numpy as np
from rdkit import Chem, RDLogger
from rdkit.Chem import DataStructs

# Disable RDKit logging: when checking SMILES validity, we suppress warnings
RDLogger.DisableLog("rdApp.*")

from .chemoinformatics import (
    canonize,
    canonize_smiles,
    remove_stereo,
    get_substr_match,
)
from .protac_cheminformatics import reassemble_protac
from .graphs_utils import (
    get_smiles2graph_edit_distance,
    get_smiles2graph_edit_distance_norm,
)


def is_valid_smiles(
        smiles: Optional[str],
        return_mol: bool = False,
) -> Union[bool, Tuple[bool, Chem.Mol]]:
    """ Check if a SMILES is valid, i.e., it can be parsed by RDKit.
    
    Args:
        smiles (Optional[str]): The SMILES to check.
        return_mol (bool): If True, return the RDKit molecule object, i.e., `(is_valid, mol)`.
    
    Returns:
        bool | Tuple[bool, Chem.Mol]: True if the SMILES is valid, False otherwise. If return_mol is True, also return the RDKit molecule object.
    """
    if smiles is None:
        return False
    mol = Chem.MolFromSmiles(smiles)
    if return_mol:
        return mol is not None, mol
    return mol is not None


def has_three_substructures(smiles: Optional[str]) -> bool:
    """ Check if a PROTAC SMILES has three substructures. """
    if smiles is None:
        return False
    return smiles.count(".") == 2


def has_all_attachment_points(smiles: Optional[str]) -> bool:
    """ Check if a PROTAC SMILES has all attachment points, i.e., [*:1] and [*:2], two each. """
    if smiles is None:
        return False
    return smiles.count("[*:1]") == 2 and smiles.count("[*:2]") == 2


def split_prediction(
        pred: str,
        poi_attachment_id: int = 1,
        e3_attachment_id: int = 2,
) -> Optional[dict[str, str]]:
    """ Split a PROTAC SMILES prediction into its three substructures.

    Args:
        pred (str): The SMILES of the PROTAC molecule.
        poi_attachment_id (int): The attachment point ID for the POI substructure.
        e3_attachment_id (int): The attachment point ID for the E3 substructure.

    Returns:
        dict[str, str] | None: A dictionary (with keys: 'e3', 'linker', 'poi') containing the SMILES notations for the POI, linker, and E3 substructures, or None if the prediction is invalid
    """
    ret = {k: None for k in ['poi', 'linker', 'e3']}
    if pred is None:
        return ret

    ligands = pred.split('.')
    if len(ligands) != 3:
        return ret

    for ligand in ligands:
        if f'[*:{poi_attachment_id}]' in ligand and f'[*:{e3_attachment_id}]' not in ligand:
            ret['poi'] = ligand
        elif f'[*:{e3_attachment_id}]' in ligand and f'[*:{poi_attachment_id}]' not in ligand:
            ret['e3'] = ligand
        elif f'[*:{poi_attachment_id}]' in ligand and f'[*:{e3_attachment_id}]' in ligand:
            ret['linker'] = ligand
    return ret


def rename_attachment_id(mol: Union[str, Chem.Mol], old_id: int, new_id: int) -> Union[str, Chem.Mol]:
    """ Rename an attachment point ID in a molecule.

    Args:
        mol: The input molecule.
        old_id: The old attachment point ID.
        new_id: The new attachment point ID.

    Returns:
        The renamed molecule.
    """
    return_str = False
    if isinstance(mol, Chem.Mol):
        mol = Chem.MolToSmiles(mol, canonical=True)
        return_str = True
    # Regex-replace the patterns "[*:old_id]" or "[old_id*]" with "[*:new_id]"
    mol = re.sub(rf'\[\*:{old_id}\]', f'[*:{new_id}]', mol)
    mol = re.sub(rf'\[{old_id}\*\]', f'[*:{new_id}]', mol)
    mol = canonize_smiles(mol)
    if mol is None:
        return None
    mol = Chem.MolFromSmiles(mol)
    if return_str:
        return Chem.MolToSmiles(mol, canonical=True)
    return mol

def at_least_two_ligands_correct(
        protac_smiles: str,
        ligands_smiles: str,
) -> bool:
    """ Check if at least two ligands are correct. """
    # Check if there is at least one "." in the ligands SMILES
    if "." not in ligands_smiles:
        return False
    ligands = ligands_smiles.split(".")
    return True


def check_reassembly(
        protac_smiles: str,
        ligands_smiles: str,
        stats: Optional[Dict[str, int]] = None,
        linker_can_be_null: bool = False,
        poi_attachment_id: int = 1,
        e3_attachment_id: int = 2,
        verbose: int = 0,
        return_reassembled_smiles: bool = False,
) -> bool:
    """Check if the reassembled PROTAC matches the original PROTAC SMILES.

    Args:
        protac_smiles (str): The original PROTAC SMILES.
        ligands_smiles (str): The SMILES of the joined PROTAC ligands, separated by a "." (dot).
        stats (Optional[Dict[str, int]]): A dictionary to store statistics about the reassembly process.
        linker_can_be_null (bool): If False, the linker cannot be empty, and if so, a None will be returned. If True, a special check is performed to rename the E3 and WH attchament points to assemble them together.
        poi_attachment_id (int): The label of the attachment point for the POI ligand, i.e., "[*:{poi_attachment_id}]". Default is 1.
        e3_attachment_id (int): The label of the attachment point for the E3 binder, i.e., "[*:{e3_attachment_id}]". Default is 2.
        verbose (int): The verbosity

    Returns:
        bool: True if the reassembled PROTAC matches the original PROTAC SMILES, False otherwise. None if it failed.
    """
    ligands_smiles = canonize_smiles(ligands_smiles)
    if ligands_smiles is None:
        if verbose:
            logging.error('Ligand could be canonicalized.')
        return (False, None) if return_reassembled_smiles else False

    null_linker_e3 = f'[*:{e3_attachment_id}][*:{poi_attachment_id}]'
    null_linker_poi = f'[*:{poi_attachment_id}][*:{e3_attachment_id}]'
    linker_is_null = False
    if null_linker_e3 in ligands_smiles or null_linker_poi in ligands_smiles:
        # If the linker is empty, remove the linker atoms
        ligands_smiles = ligands_smiles.replace(null_linker_poi, '')
        ligands_smiles = ligands_smiles.replace(null_linker_e3, '')
        ligands_smiles = ligands_smiles.replace('..', '.')
        ligands_smiles = ligands_smiles.rstrip('.')
        ligands_smiles = ligands_smiles.lstrip('.')
        ligands_smiles = canonize_smiles(ligands_smiles)
        linker_is_null = True

    if linker_can_be_null or linker_is_null:
        if len(ligands_smiles.split('.')) == 2:
            # Replace the attachment points with a third one (they will be joined later)
            ligands_smiles = rename_attachment_id(ligands_smiles, e3_attachment_id, max([poi_attachment_id, e3_attachment_id]) + 1)
            ligands_smiles = rename_attachment_id(ligands_smiles, poi_attachment_id, max([poi_attachment_id, e3_attachment_id]) + 1)

    ligands_mol = Chem.MolFromSmiles(ligands_smiles)
    if ligands_mol is None:
        if verbose:
            logging.error('ligands_mol is None')
        return (False, None) if return_reassembled_smiles else False

    try:
        reassembled_mol = Chem.molzip(ligands_mol)
        if reassembled_mol is None:
            if stats is not None:
                stats['molzip failed'] += 1
            if verbose:
                logging.error(f'molzip failed')
            return (False, None) if return_reassembled_smiles else False
    except:
        if stats is not None:
            stats['molzip failed (exception)'] += 1
        if verbose:
            logging.error(f'molzip failed (exception)')
        return (False, None) if return_reassembled_smiles else False

    try:
        reassembled_smiles = canonize(Chem.MolToSmiles(reassembled_mol))
        if reassembled_smiles is None:
            if stats is not None:
                stats['MolToSmiles of reassembled failed'] += 1
            if verbose:
                logging.error('MolToSmiles of reassembled failed')
            return (False, None) if return_reassembled_smiles else False
    except:
        if stats is not None:
            stats['MolToSmiles of reassembled failed'] += 1
        if verbose:
            logging.error('MolToSmiles of reassembled failed')
        return (False, None) if return_reassembled_smiles else False

    is_equal = canonize(protac_smiles) == reassembled_smiles

    return (is_equal, reassembled_smiles) if return_reassembled_smiles else is_equal


def check_substructs(
        protac_smiles: str,
        poi_smiles: str = None,
        linker_smiles: str = None,
        e3_smiles: str = None,
        return_bond_types: bool = False,
        poi_attachment_id: int = 1,
        e3_attachment_id: int = 2,
        pred: str = None,
) -> Union[bool, Tuple[bool, dict[str, str]]]:
    """ DEPRECATED.
    
    Check if the reassembled PROTAC is correct.
    
    Args:
        protac_smiles (str): The SMILES of the PROTAC molecule.
        poi_smiles (str): The SMILES of the POI ligand.
        linker_smiles (str): The SMILES of the linker.
        e3_smiles (str): The SMILES of the E3 binder.
        return_bond_types (bool): If True, return the bond types used for the reassembly.
        poi_attachment_id (int): The label of the attachment point for the POI ligand, i.e., "[*:{poi_attachment_id}]".
        e3_attachment_id (int): The label of the attachment point for the E3 binder, i.e., "[*:{e3_attachment_id}]".
        pred (str): The SMILES of the predicted PROTAC molecule.

    Returns:
        bool | Tuple[bool, dict[str, str]]: True if the reassembled PROTAC is correct, False otherwise. If return_bond_types is True, also return the bond types used for the reassembly.
    """
    def get_failed_return():
        if return_bond_types:
            return False, {}
        return False

    # Make some checks before starting and fail if necessary
    all_subs_none = all(v is None for v in [poi_smiles, linker_smiles, e3_smiles])
    any_subs_none = any(v is None for v in [poi_smiles, linker_smiles, e3_smiles])

    if pred is not None and all_subs_none:
        # Split the prediction into the substructures
        pred_substructs = split_prediction(pred, poi_attachment_id, e3_attachment_id)
        if any(v is None for v in pred_substructs.values()):
            return get_failed_return()
        poi_smiles = pred_substructs['poi']
        linker_smiles = pred_substructs['linker']
        e3_smiles = pred_substructs['e3']
    elif pred is None and any_subs_none: 
        return get_failed_return()
    elif pred is None and all_subs_none:
        logging.warning("Arguments 'pred' and 'poi_smiles', 'linker_smiles', 'e3_smiles' cannot be all None.")
        return get_failed_return()

    if f"[*:{poi_attachment_id}]" in e3_smiles:
        return get_failed_return()
    if f"[*:{e3_attachment_id}]" in poi_smiles:
        return get_failed_return()
    if f"[*:{poi_attachment_id}]" not in linker_smiles:
        return get_failed_return()
    if f"[*:{e3_attachment_id}]" not in linker_smiles:
        return get_failed_return()
    
    correct_substructs = False
    protac_mol = Chem.MolFromSmiles(protac_smiles)
    protac_inchi = Chem.MolToInchi(protac_mol)
    protac_smiles_canon = canonize_smiles(protac_smiles)
    bond_types = {}
    bonds = ['single', 'double', 'triple']
    # for e3_bond_type, poi_bond_type in itertools.product([bonds, bonds]):
    for e3_bond_type in bonds:
        for poi_bond_type in bonds:
            try:
                assmbl_smiles, assmbl_mol = reassemble_protac(
                    poi_smiles,
                    linker_smiles,
                    e3_smiles,
                    e3_bond_type,
                    poi_bond_type,
                    poi_attachment_id,
                    e3_attachment_id,
                )
                if assmbl_mol is not None:
                    # If either the InChI or SMILES of the reassembled PROTAC is
                    # the same as the original PROTAC, then the reassembly is
                    # correct.
                    if protac_inchi == Chem.MolToInchi(assmbl_mol):
                        correct_substructs = True
                        bond_types['e3_bond_type'] = e3_bond_type
                        bond_types['poi_bond_type'] = poi_bond_type
                        break
                    if protac_smiles_canon == canonize_smiles(assmbl_smiles):
                        correct_substructs = True
                        bond_types['e3_bond_type'] = e3_bond_type
                        bond_types['poi_bond_type'] = poi_bond_type
                        break
            except:
                continue
    if return_bond_types:
        return correct_substructs, bond_types
    return correct_substructs


def score_prediction(
        protac_smiles: str,
        label_smiles: str,
        pred_smiles: str,
        rouge = None,
        poi_attachment_id: int = 1,
        e3_attachment_id: int = 2,
        fpgen = Chem.rdFingerprintGenerator.GetMorganGenerator(radius=11, fpSize=2048),
        compute_rdkit_metrics: bool = False,
        compute_graph_metrics: bool = False,
        graph_edit_kwargs: Dict[str, Any] = {},
) -> dict[str, float]:
    """ Score a PROTAC SMILES prediction.

    Args:
        protac_smiles (str): The SMILES of the PROTAC molecule.
        label_smiles (str): The SMILES of the ground truth PROTAC molecule.
        pred_smiles (str): The SMILES of the predicted PROTAC molecule.
        rouge (Rouge | None): The Rouge object to use for scoring. If None, do not compute Rouge scores. Example: `rouge = evaluate.load("rouge")`
        poi_attachment_id (int): The attachment point ID for the POI substructure.
        e3_attachment_id (int): The attachment point ID for the E3 substructure.

    Returns:
        dict[str, float]: A dictionary containing the scores for the prediction
    """
    protac_mol = Chem.MolFromSmiles(protac_smiles)
    protac_num_atoms = protac_mol.GetNumHeavyAtoms()

    scores = {
        'has_three_substructures': has_three_substructures(pred_smiles),
        'has_all_attachment_points': has_all_attachment_points(pred_smiles),
        'num_fragments': 0 if pred_smiles is None else pred_smiles.count('.') + 1,
        'tanimoto_similarity': 0.0, # Default value
        'valid': False,
        'reassembly': False,
        'reassembly_nostereo': False,
        'heavy_atoms_difference': protac_num_atoms,
        'heavy_atoms_difference_norm': 1.0,
        'all_ligands_equal': False,
    }

    pred_substructs = split_prediction(pred_smiles, poi_attachment_id, e3_attachment_id)

    # Compute metrics for the "entire" predicted PROTAC molecule
    if None not in list(pred_substructs.values()):
        e3_nostereo = remove_stereo(pred_substructs['e3'])
        linker_nostereo = remove_stereo(pred_substructs['linker'])
        poi_nostereo = remove_stereo(pred_substructs['poi'])
        if None not in [e3_nostereo, linker_nostereo, poi_nostereo]:
            pred_nostereo = f"{e3_nostereo}.{linker_nostereo}.{poi_nostereo}"
            scores['reassembly_nostereo'] = check_reassembly(remove_stereo(protac_smiles), pred_nostereo)

        scores['valid'] = is_valid_smiles(pred_smiles)
        is_equal, reassembled_smiles = check_reassembly(protac_smiles, pred_smiles, return_reassembled_smiles=True)
        scores['reassembly'] = is_equal

        # Get the number of heavy atoms difference between the reassembled PROTAC and the ground truth PROTAC
        if reassembled_smiles is not None:
            reassembled_mol = Chem.MolFromSmiles(reassembled_smiles)
            if reassembled_mol is not None:
                scores['heavy_atoms_difference'] -= reassembled_mol.GetNumHeavyAtoms()
                scores['heavy_atoms_difference_norm'] = scores['heavy_atoms_difference'] / protac_num_atoms

        if scores['valid'] and compute_rdkit_metrics and fpgen is not None:
            # Get Tanimoto similarity between the predicted PROTAC and the ground truth PROTAC
            pred_mol = Chem.MolFromSmiles(pred_smiles)
            label_mol = Chem.MolFromSmiles(label_smiles)
            pred_fp = fpgen.GetFingerprint(pred_mol)
            label_fp = fpgen.GetFingerprint(label_mol)
            scores['tanimoto_similarity'] = DataStructs.TanimotoSimilarity(pred_fp, label_fp)

    if rouge is not None:
        rouge_output = rouge.compute(predictions=[pred_smiles], references=[label_smiles])
        scores.update({k: v for k, v in rouge_output.items()})

    # Compute metrics for each substructure
    label_substructs = split_prediction(label_smiles, poi_attachment_id, e3_attachment_id)

    # Set default values
    for sub in ['e3', 'poi', 'linker']:
        scores[f'{sub}_valid'] = False
        scores[f'{sub}_equal'] = False
        scores[f'{sub}_has_attachment_point(s)'] = False
        scores[f'{sub}_tanimoto_similarity'] = 0.0

        # NOTE: The graph edit distance can be very high and dependant on the
        # graphs, but when the molecule is not valid, then we cannot compute it.
        # Because of that, we instead set it to something very large, in case we
        # need to sum the eval metrics.
        scores[f'{sub}_graph_edit_distance'] = 1e64
        scores[f'{sub}_graph_edit_distance_norm'] = 1.0
        scores[f'{sub}_heavy_atoms_difference'] = 0
        try:
            scores[f'{sub}_heavy_atoms_difference'] = Chem.MolFromSmiles(label_substructs[sub]).GetNumHeavyAtoms()
        except:
            logging.warning(f"WARNING: {sub} substructure is None in the label: '{label_smiles}' - PROTAC: '{protac_smiles}'")
        scores[f'{sub}_heavy_atoms_difference_norm'] = 1.0

    # Calculate metrics for each substructure
    for sub in ['e3', 'poi', 'linker']:
        # Skip if the predicted substructure is None from `split_prediction`
        pred_sub = pred_substructs[sub]
        label_sub = label_substructs[sub]
        if pred_sub is None:
            continue
        if label_sub is None:
            logging.warning(f"WARNING: {sub} substructure is None in the label: '{label_smiles}' - PROTAC: '{protac_smiles}'")
            continue

        # Check if the predicted substructure is a valid RDKit molecule
        sub_valid, sub_mol = is_valid_smiles(pred_sub, return_mol=True)
        scores[f'{sub}_valid'] = sub_valid

        if sub_mol is None:
            continue

        # Check if the predicted substructure has the correct attachment point(s)
        if sub == 'e3':
            if f'[*:{e3_attachment_id}]' in pred_sub and f'[*:{poi_attachment_id}]' not in pred_sub:
                scores[f'{sub}_has_attachment_point(s)'] = True
        elif sub == 'poi':
            if f'[*:{poi_attachment_id}]' in pred_sub and f'[*:{e3_attachment_id}]' not in pred_sub:
                scores[f'{sub}_has_attachment_point(s)'] = True
        elif sub == 'linker':
            if f'[*:{poi_attachment_id}]' in pred_sub and f'[*:{e3_attachment_id}]' in pred_sub:
                scores[f'{sub}_has_attachment_point(s)'] = True
        
        # Check if the predicted substructure InChI is the same as the ground truth substructure InChI
        if scores[f'{sub}_valid']:
            # scores[f'{sub}_equal'] = Chem.MolToInchi(sub_mol) == Chem.MolToInchi(Chem.MolFromSmiles(label_sub))
            canon_pred = canonize_smiles(pred_sub)
            canon_label = canonize_smiles(label_sub)
            scores[f'{sub}_equal'] = canon_pred == canon_label
        
        # Compute graph-related metrics
        if scores[f'{sub}_valid'] and compute_graph_metrics:
            scores[f'{sub}_graph_edit_distance'] = get_smiles2graph_edit_distance(pred_sub, label_sub, **graph_edit_kwargs)
            scores[f'{sub}_graph_edit_distance_norm'] = get_smiles2graph_edit_distance_norm(
                smi1=pred_sub,
                smi2=label_sub,
                ged_G1_G2=scores[f'{sub}_graph_edit_distance'],
                **graph_edit_kwargs,
            )
        
        # Get the number of heavy atoms difference between the predicted substructure and the ground truth substructure
        if scores[f'{sub}_valid']:
            pred_mol = Chem.MolFromSmiles(pred_sub)
            label_mol = Chem.MolFromSmiles(label_sub)
            if label_mol is None:
                logging.warning(f"WARNING: {sub} substructure is None in the label: '{label_smiles}' - PROTAC: '{protac_smiles}'")
                continue
            scores[f'{sub}_heavy_atoms_difference'] -= pred_mol.GetNumHeavyAtoms()
            scores[f'{sub}_heavy_atoms_difference_norm'] = scores[f'{sub}_heavy_atoms_difference'] / label_mol.GetNumHeavyAtoms()

        # Get Tanimoto similarity b/w the predicted substructure and the ground truth
        if scores[f'{sub}_valid'] and compute_rdkit_metrics:
            pred_mol = Chem.MolFromSmiles(pred_sub)
            label_mol = Chem.MolFromSmiles(label_sub)
            if label_mol is None:
                logging.warning(f"WARNING: {sub} substructure is None in the label: '{label_smiles}' - PROTAC: '{protac_smiles}'")
                continue
            pred_fp = fpgen.GetFingerprint(pred_mol)
            label_fp = fpgen.GetFingerprint(label_mol)
            scores[f'{sub}_tanimoto_similarity'] = DataStructs.TanimotoSimilarity(pred_fp, label_fp)

        # Compute Rouge scores
        if rouge is not None:
            rouge_output = rouge.compute(predictions=[pred_sub], references=[label_sub])
            scores.update({f'{sub}_{k}': v for k, v in rouge_output.items()})

    scores['all_ligands_equal'] = all([scores[f'{sub}_equal'] for sub in ['e3', 'poi', 'linker']])

    return scores