File size: 15,546 Bytes
9dd777e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
from typing import List, Optional, Tuple, Any, Dict
import functools

import pandas as pd
import numpy as np
from tqdm import tqdm
from sklearn.cluster import AgglomerativeClustering, KMeans
from scipy.stats import skew
from sklearn.metrics import silhouette_score, davies_bouldin_score, calinski_harabasz_score

from rdkit import Chem, DataStructs
from rdkit.Chem import rdFingerprintGenerator

from protac_splitter.graphs.utils import get_fp, numpy_to_rdkit_fp
from protac_splitter.chemoinformatics import remove_dummy_atoms


def get_umap_clusters_fp(fp_list: List[str], n_clusters: int = 7) -> np.ndarray:
    """
    Cluster a list of SMILES strings using the umap clustering algorithm.
    From Scaffold Splits Overestimate Virtual Screening Performance
    https://arxiv.org/abs/2406.00873

    Args:
        fp_list (List[str]): List of SMILES strings.
        n_clusters (int): The number of clusters to use for clustering.

    Returns:
        np.ndarray: Array of cluster labels corresponding to each SMILES string in the input list.
    """
    ac = AgglomerativeClustering(n_clusters=n_clusters)
    ac.fit_predict(np.stack(fp_list))
    return ac.labels_

def get_kmeans_clusters_fp(fp_list: List[str], n_clusters: int = 10, return_centroids: bool = False) -> np.ndarray:
    """
    Cluster a list of SMILES strings using the KMeans clustering algorithm.

    Args:
        fp_list (List[str]): List of SMILES strings.
        n_clusters (int): The number of clusters to use for clustering.
        return_centroids (bool): If True, return the cluster centroids as well.

    Returns:
        np.ndarray: Array of cluster labels corresponding to each SMILES string in the input list.
    """
    km = KMeans(n_clusters=n_clusters, n_init='auto', random_state=42, max_iter=1000)
    if return_centroids:
        km.fit(np.stack(fp_list))
        return km.labels_, km.cluster_centers_
    return km.fit_predict(np.stack(fp_list))

def evaluate_clusters(X: np.array, clusters: np.ndarray) -> Dict[str, float]:
    """ Compute clustering metrics and assess cluster size distribution.
    
    Args:
        X (np.array): The input data used for clustering.
        clusters (np.ndarray): The cluster labels for each data point in X.
        
    Returns:
        Dict[str, float]: A dictionary containing various clustering metrics:
            - silhouette: Silhouette score of the clustering.
            - davies_bouldin: Davies-Bouldin index of the clustering.
            - calinski_harabasz: Calinski-Harabasz index of the clustering.
            - avg_cluster_size: Average size of clusters.
            - avg_cluster_data_ratio: Ratio of average cluster size to total data size.
            - std_cluster_size: Standard deviation of cluster sizes.
            - min_cluster_size: Minimum size of clusters.
            - median_cluster_size: Median size of clusters.
            - max_cluster_size: Maximum size of clusters.
            - cluster_size_skewness: Skewness of cluster sizes indicating imbalance.
            - num_clusters: Number of unique clusters found.
    """
    
    unique_clusters = list(set(clusters))
    
    if len(unique_clusters) < 2:  # Avoid single-cluster issues
        return {
            "silhouette": -1,
            "davies_bouldin": float("inf"),
            "calinski_harabasz": -1,
            "avg_cluster_size": len(X),
            "avg_cluster_data_ratio": 1,
            "std_cluster_size": 0,
            "min_cluster_size": len(X),
            "median_cluster_size": len(X),
            "max_cluster_size": len(X),
            "cluster_size_skewness": 0,
            "num_clusters": 1,
        }

    # Compute standard clustering metrics
    silhouette = silhouette_score(X, clusters)
    davies_bouldin = davies_bouldin_score(X, clusters)
    calinski_harabasz = calinski_harabasz_score(X, clusters)

    # Compute cluster size statistics
    cluster_sizes = [len(np.where(clusters == i)[0]) for i in np.unique(clusters)]
    avg_cluster_size = np.mean(cluster_sizes)
    avg_cluster_data_ratio = avg_cluster_size / len(X)
    std_cluster_size = np.std(cluster_sizes)
    median_cluster_size = np.median(cluster_sizes)
    min_cluster_size = np.min(cluster_sizes)
    max_cluster_size = np.max(cluster_sizes)
    cluster_size_skewness = skew(cluster_sizes, nan_policy="omit")  # Indicates imbalance in cluster sizes

    return {
        "silhouette": silhouette,
        "davies_bouldin": davies_bouldin,
        "calinski_harabasz": calinski_harabasz,
        "avg_cluster_size": avg_cluster_size,
        "avg_cluster_data_ratio": avg_cluster_data_ratio,
        "std_cluster_size": std_cluster_size,
        "min_cluster_size": min_cluster_size,
        "median_cluster_size": median_cluster_size,
        "max_cluster_size": max_cluster_size,
        "cluster_size_skewness": cluster_size_skewness,
        "num_clusters": len(unique_clusters),
    }

def get_representative_e3s(
    train_df: pd.DataFrame,
    fp_generator: Optional[Any] = None,
    n_clusters_candidates: List[int] = [10, 25, 50, 100, 150],
    e3_column: str = 'E3 Binder SMILES with direction',
) -> Tuple[List[str], List[Any], int, pd.DataFrame]:
    """
    Get representative E3 ligands from a DataFrame of training data by clustering their fingerprints.
    This function computes Morgan fingerprints for unique E3 ligands, clusters them using KMeans and UMAP,
    evaluates the clusters using silhouette, Davies-Bouldin, and Calinski-Harabasz scores, and identifies
    the optimal number of clusters based on these metrics.
    It returns the representative E3 ligands, their fingerprints, the best number of clusters, and a DataFrame
    containing the clustering metrics.
    
    Parameters:
        train_df (pd.DataFrame): DataFrame containing training data with E3 ligands.
        fp_generator (Optional[Any]): RDKit fingerprint generator. If None, a default Morgan fingerprint generator with 1024 bits and radius 6 is used.
        n_clusters_candidates (List[int]): List of candidate numbers of clusters to evaluate.
        e3_column (str): The column name in the DataFrame that contains the E3 ligand SMILES strings.
        
    Returns:
        Tuple[List[str], List[Any], int, pd.DataFrame]: A tuple containing:
            - List of representative E3 ligand SMILES strings.
            - List of RDKit fingerprints corresponding to the representative E3 ligands.
            - The best number of clusters determined from the clustering metrics.
            - DataFrame containing clustering metrics for each candidate number of clusters.
    """
    if e3_column not in train_df.columns:
        raise ValueError(f"Column '{e3_column}' not found in the DataFrame.")

    if fp_generator is None:
        fp_generator = rdFingerprintGenerator.GetMorganGenerator(
            radius=16,
            fpSize=1024,
            useBondTypes=True,
            includeChirality=True,
        )

    fp_dict = {}
    for smi in tqdm(train_df[e3_column].unique()):
        fp = get_fp(remove_dummy_atoms(smi), fp_generator)
        if fp is not None:
            fp_dict[smi] = fp

    fp_list = list(fp_dict.values())
    fp2smiles = {fp.tobytes(): smi for smi, fp in fp_dict.items() if fp is not None}

    centroids_dict = {}
    clusters_dict = {}
    metrics_df = []
    for n_clusters in tqdm(n_clusters_candidates, desc="Clustering and evaluating"):
        clusters, centroids = get_kmeans_clusters_fp(fp_list, n_clusters=n_clusters, return_centroids=True)
        metrics = evaluate_clusters(fp_list, clusters)
        clusters_dict[f'kmeans_n{n_clusters}'] = clusters.copy()
        centroids_dict[n_clusters] = centroids.copy()

        metrics['num_clusters'] = n_clusters
        metrics['cluster_algorithm'] = 'kmeans'
        metrics_df.append(metrics.copy())
        
        clusters = get_umap_clusters_fp(fp_list, n_clusters=n_clusters)
        metrics = evaluate_clusters(fp_list, clusters)
        clusters_dict[f'umap_n{n_clusters}'] = clusters.copy()

        metrics['num_clusters'] = n_clusters
        metrics['cluster_algorithm'] = 'umap'
        metrics_df.append(metrics.copy())

    metrics_df = pd.DataFrame(metrics_df)

    # Get the sweet spot for the number of clusters
    # Flip davies_bouldin so that all metrics are to be maximized
    metrics_df['-davies_bouldin'] = -metrics_df['davies_bouldin']

    # Normalize all three metrics (by group if you want per algorithm)
    metrics = ['silhouette', '-davies_bouldin', 'calinski_harabasz']
    df_norm = metrics_df.copy()
    df_norm[metrics] = df_norm.groupby('cluster_algorithm')[metrics].transform(
        lambda x: (x - x.min()) / (x.max() - x.min())
    )

    # Measure divergence: standard deviation of normalized metrics per row
    df_norm['metric_divergence'] = df_norm[metrics].std(axis=1)

    # Pick the point with lowest divergence, possibly applying constraints (e.g. not too many clusters)
    sweet_spots = df_norm.loc[df_norm.groupby('cluster_algorithm')['metric_divergence'].idxmin()]

    best_n_clusters = sweet_spots[['num_clusters']]['num_clusters'].unique()[0]

    # Get the centroids of the clusters
    centroids = centroids_dict[best_n_clusters]

    # Get the cluster labels for the centroids
    clusters = np.array(clusters_dict[f'kmeans_n{n_clusters}'])
    representative_e3s = []
    representative_e3s_fp = []
    for label, centroid in enumerate(centroids):
        # Isolate the FP with the same label as the centroid
        fp_cluster = np.array(fp_list)[clusters == label]
        # Get the closest FP for the centroid, use euclidean distance
        distances = np.linalg.norm(fp_cluster - centroid, axis=1)
        closest_fp = np.argmin(distances)
        # To get the SMILES from the FP, use the fp2smiles dictionary
        closest_smiles = fp2smiles[fp_cluster[closest_fp].tobytes()]
        # Append the closest SMILES to the representative_e3s list
        representative_e3s.append(closest_smiles)
        representative_e3s_fp.append(fp_cluster[closest_fp])

    # Convert the representative E3s to RDKit fingerprints
    representative_e3s_fp = [numpy_to_rdkit_fp(fp) for fp in representative_e3s_fp]
    
    return representative_e3s, representative_e3s_fp, best_n_clusters, metrics_df


DEFAULT_REPRESENTATIVE_E3S = [
    'Cc1ncsc1-c1ccc(CNC(=O)[C@@H]2C[C@@H](O)CN2C(=O)CN[*:2])cc1',
    'O=C1CCC(N2Cc3c(N=[*:2])cccc3C2=O)C(=O)N1',
    'CC(=O)NC(C(=O)N1CC(O)CC1C(=O)[*:2])C(C)(C)C',
    'CN[C@@H](C)C(=O)N[C@H](C(=O)N1C[C@@H](Oc2ccccc2[*:2])C[C@H]1C(=O)N[C@@H]1CCCc2ccccc21)C1CCCCC1',
    'Cc1ncsc1-c1ccc(CNC(=O)C2CC(O)CN2C(=O)C(NC(=O)CCO[*:2])C(C)(C)C)cc1',
    'O=C1CCC(N2Cc3ccc([*:2])cc3C2=O)C(=O)N1',
    'COc1ccc(C2=N[C@@H](c3ccc(Cl)cc3)[C@@H](c3ccc(Cl)cc3)N2C(=O)N2CCN(CC(=O)[*:2])C(=O)C2)c(OC(C)C)c1',
    'CC(NC(=O)C1CC(O)CN1C(=O)C(N[*:2])C(C)(C)C)c1ccc(C2CC2)cc1',
    'CCOc1cc(C(C)(C)C)ccc1C1=NC(c2ccc(Cl)cc2)C(c2ccc(Cl)cc2)N1C(=O)N1CCN(CCCC[*:2])CC1',
    'CNC(C)C(=O)NC(C(=O)N1CCCC1c1cncc(C(=O)c2cccc([*:2])c2)c1)C1CCCCC1',
    'CN[C@@H](C)C(=O)N[C@H](C(=O)N1CCC[C@H]1c1nc(C(=O)c2ccc([*:2])cc2)cs1)C1CCCCC1',
    'O=C1CCC(N2C(=O)c3cccc(OC[*:2])c3C2=O)C(=O)N1',
    'CCOc1cc(C(C)(C)C)ccc1C1=NC(c2ccc(Cl)cc2)C(c2ccc(Cl)cc2)N1C(=O)N1CCN([*:2])CC1',
    'Cc1ncsc1-c1ccc(CNC(=O)[C@H]2C[C@H](O)CN2C(=O)C(N[*:2])C(C)(C)C)cc1',
    'Cc1ncsc1-c1ccc([C@H](C)NC(=O)[C@@H]2C[C@@H](O)CN2C(=O)[C@@H](N[*:2])C(C)(C)C)cc1',
    'CN[C@@H](C)C(=O)N[C@H](C(=O)N1CCC[C@H]1c1cncc(C(=O)c2cccc([*:2])c2)c1)C1CCCCC1',
    'Cc1ncsc1-c1ccc(CNC(=O)[C@@H]2C[C@@H](O)CN2C(=O)[C@@H](N[*:2])C(C)(C)C)c(OC2CCNCC2)c1',
    'CNC(C)C(=O)NC(C(=O)N1CC(Oc2ccc([*:2])cc2)CC1C(=O)NC1CCCc2ccccc21)C1CCCCC1',
    'C[C@H](NC(=O)[C@@H]1C[C@@H](O)CN1C(=O)[C@@H](N[*:2])C(C)(C)C)c1ccc(C(C)(C)C)cc1',
    'CNC(C)C(=O)NC(C(=O)N1CCCC1c1nc(C(=O)c2ccc([*:2])cc2)cs1)C1CCCCC1',
    'CC(=O)NC(C(=O)N1CC(O)CC1C(=O)NCc1ccc(-c2scnc2C)cc1[*:2])C(C)(C)C',
    'Cc1ncsc1-c1ccc(CNC(=O)[C@@H]2C[C@@H](O)CN2C(=O)[C@@H](NC(=O)C2(F)CC2)C(C)(C)C)c([*:2])c1',
    'CCOc1cc(C(C)(C)C)ccc1C1=NC(C)(c2ccc(Cl)cc2)C(C)(c2ccc(Cl)cc2)N1C(=O)N1CCN(CC(=O)[*:2])CC1',
    'COc1ccc(C(=O)[*:2])cc1N1CCC(=O)NC1=O',
    'CN[C@@H](C)C(=O)N[C@H](C(=O)N[C@H]1C[C@H]2CC[C@@H]1N(CCc1ccc([*:2])cc1)C2)C1CCCCC1',
    'CNC(C)C(=O)NC(C(=O)N1CC(N[*:2])CC1C(=O)NC1CCCc2ccccc21)C1CCCCC1',
    'CN[C@@H](C)C(=O)N[C@@H](CCCCN[*:2])C(=O)N1CCC[C@H]1C(=O)Nc1snnc1-c1ccccc1',
    'CNC(C)C(=O)NC(C(=O)NC1CC2CCC1N(CCc1cccc([*:2])c1)C2)C1CCCCC1',
    'O=C1CCC(N2C(=O)c3ccc(N[*:2])cc3C2=O)C(=O)N1',
    'CNC(C)C(=O)NC(C(=O)N1CC(NC(=O)CC[*:2])CC1C(=O)Nc1c(F)cccc1F)C(C)(C)C',
    'Cc1ncsc1-c1ccc(CNC(=O)[C@@H]2C[C@@H](O)CN2C(=O)[C@H](N[*:2])C(C)(C)C)cc1',
    'Cc1nc[nH]c1-c1ccc(CNC(=O)C2CC(O)CN2C(=O)C(N[*:2])C(C)(C)C)cc1',
    'Cc1ncsc1-c1ccc(C(C)NC(=O)C2CC(O)CN2C(=O)C(N[*:2])C(C)(C)C)cc1',
    'Cc1ncsc1-c1ccc(CNC(=O)[C@@H]2C[C@@H](O)CN2C(=O)[C@@H](N[*:2])C(C)(C)C)cc1',
    'O=C1CCC(c2cccc([*:2])c2)C(=O)N1',
    'CC(=O)N[C@H](C(=O)N1C[C@@H](O)C[C@@H]1C(=O)N[C@@H](CC(=O)N1CCC([*:2])CC1)c1ccccc1)C(C)C',
    'O=C(CCl)[*:2]',
    'CC[C@@H](NC(=O)[C@@H]1C[C@H](N[*:2])CN1C(=O)[C@@H](NC(=O)[C@H](C)NC)C(C)(C)C)c1ccccc1',
    'CN[C@H](C)C(=O)N[C@@H]1CCO[C@@H]2CC(C)(C)[C@H](C(=O)N[C@@H]3CCCc4cc([*:2])ccc43)N2C1=O',
    'CN[C@@H](C)C(=O)N[C@H](C(=O)N1CCC[C@H]1c1nc(C(=O)c2ccc(F)cc2)cs1)C1CCN(C[*:2])CC1',
    'Cc1ncsc1-c1ccc(CNC(=O)C2CC(O)CN2C(=O)C(N[*:2])C(C)(C)C)cc1',
    'CNC(C)C(=O)NC(CCCCN[*:2])C(=O)N1CCCC1C(=O)Nc1snnc1-c1ccccc1',
    'O=C1CCC(N2C(=O)c3cccc([*:2])c3C2=O)C(=O)O1',
    'COc1ccc(C2=N[C@@H](c3ccc(Cl)cc3)[C@@H](c3ccc(Cl)cc3)N2C(=O)N2CCN(CC(=O)[*:2])C(=O)C2)cc1OC(C)C',
    'Cc1ncsc1-c1ccc(CNC(=O)C2CC(O)CN2C(=O)C(N[*:2])C(C)(C)C)c(OC2CCNCC2)c1',
    'CNC(C)C(=O)NC(C(=O)N1CCCC1c1cncc(-n2ccc3c(C(=O)[*:2])cccc32)c1)C(C)C',
    'CCN1CCN(Cc2ccc(NC(=O)c3cccc(-c4ccc5nc(N[*:2])sc5n4)c3)cc2C(F)(F)F)CC1',
    'CN[C@@H](C)C(=O)N[C@H](C(=O)N1C[C@@H](NC(=O)CC[*:2])C[C@H]1C(=O)Nc1c(F)cccc1F)C(C)(C)C',
    'CNC(C)C(=O)NC(C(=O)N1CCCC1C(=O)NC(C(=O)[*:2])C(c1ccccc1)c1ccccc1)C1CCCCC1',
    'CC(=O)NCC(C(=O)N1CC(O)CC1C(=O)NC(CC(=O)N1CCC(N2CCC([*:2])CC2)CC1)c1ccccc1)C(C)C',
]


@functools.lru_cache(maxsize=1, typed=False)
def get_representative_e3s_fp(
    e3_list: Optional[List[str]] = None,
    fp_generator: Optional[Any] = None,
    verbose: int = 0,
) -> List[DataStructs.ExplicitBitVect]:
    """
    Generate Morgan fingerprints for a list of E3 ligands. If no list is provided,
    it uses a default list of representative E3 ligands.
    
    Parameters:
        e3_list (Optional[List[str]]): List of SMILES strings for E3 ligands. If None, uses a default list.
        fp_generator (Optional[Any]): RDKit fingerprint generator. If None, a default Morgan fingerprint generator is used.
        
    Returns:
        List[DataStructs.ExplicitBitVect]: List of RDKit Morgan fingerprints for the E3 ligands.
    """
    representative_e3s_fp = []
    if verbose > 0:
        iterable = tqdm(e3_list or DEFAULT_REPRESENTATIVE_E3S, desc="Generating fingerprints for E3 ligands")
    else:
        iterable = e3_list or DEFAULT_REPRESENTATIVE_E3S
    for smi in iterable:
        # Get the Morgan fingerprint for the SMILES string
        fp = get_fp(remove_dummy_atoms(smi), fp_generator, return_np=False)
        if fp is not None:
            representative_e3s_fp.append(fp)
        else:
            print(f"Warning: Invalid SMILES string '{smi}' encountered, skipping.")
    if not representative_e3s_fp:
        raise ValueError("No valid E3 ligands found in the provided list.")
    return representative_e3s_fp