Spaces:
Sleeping
Sleeping
File size: 23,432 Bytes
9dd777e 2842604 9dd777e 2842604 9dd777e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 |
import joblib
from pathlib import Path
from typing import Optional, List, Dict, Union, Any, Literal
import pandas as pd
import numpy as np
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.decomposition import TruncatedSVD
from imblearn.over_sampling import SMOTE
from imblearn.pipeline import Pipeline as ImbPipeline
from sklearn.pipeline import Pipeline
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from xgboost import XGBClassifier
import optuna
from optuna.samplers import QMCSampler
from sklearn.metrics import accuracy_score, f1_score
try:
import seaborn as sns
import matplotlib.pyplot as plt
HAS_VISUALIZATION = True
except ImportError:
HAS_VISUALIZATION = False
from .edge_features import extract_edge_features, get_edge_features
class GraphEdgeClassifier(BaseEstimator, ClassifierMixin):
"""
Edge-level graph classifier for PROTACs with integrated pipeline building.
"""
def __init__(
self,
graph_features: List[str],
categorical_features: Optional[List[str]] = None,
descriptor_features: Optional[List[str]] = None,
fingerprint_features: Optional[List[str]] = None,
use_descriptors: bool = True,
use_fingerprints: bool = True,
scaler_graph: Literal["passthrough", "standard"] = "passthrough",
scaler_desc: Literal["passthrough", "standard"] = "passthrough",
use_svd_fp: bool = True,
n_svd_components: int = 100,
binary: bool = False,
smote_k_neighbors: Optional[int] = 5,
xgb_params: Optional[dict] = None,
n_bits: int = 512,
radius: int = 6,
descriptor_names: Optional[List[str]] = None
):
self.graph_features = graph_features
self.categorical_features = categorical_features
self.descriptor_features = descriptor_features
self.fingerprint_features = fingerprint_features
self.use_descriptors = use_descriptors
self.use_fingerprints = use_fingerprints
self.scaler_graph = scaler_graph
self.scaler_desc = scaler_desc
self.use_svd_fp = use_svd_fp
self.n_svd_components = n_svd_components
self.binary = binary
self.smote_k_neighbors = smote_k_neighbors
self.xgb_params = xgb_params or {}
self.n_bits = n_bits
self.radius = radius
self.descriptor_names = descriptor_names or [
"MolWt", "HeavyAtomCount", "NumHAcceptors", "NumHDonors",
"TPSA", "NumRotatableBonds", "RingCount", "MolLogP"
]
self.pipeline = self._build_pipeline()
def _build_pipeline(self):
transformers = []
if self.categorical_features:
transformers.append(("cat", OneHotEncoder(handle_unknown="ignore"), self.categorical_features))
if self.scaler_graph == "standard":
transformers.append(("num", StandardScaler(), self.graph_features))
else:
transformers.append(("num", "passthrough", self.graph_features))
if self.use_descriptors and self.descriptor_features:
desc_block = (
("desc", StandardScaler(), self.descriptor_features)
if self.scaler_desc == "standard"
else ("desc", "passthrough", self.descriptor_features)
)
transformers.append(desc_block)
if self.use_fingerprints and self.fingerprint_features:
if self.use_svd_fp:
fp_block = ("fp",
ImbPipeline([
("svd", TruncatedSVD(n_components=self.n_svd_components, random_state=42))
]),
self.fingerprint_features)
else:
fp_block = ("fp", "passthrough", self.fingerprint_features)
transformers.append(fp_block)
preprocessor = ColumnTransformer(transformers)
# Define the classifier
classifier = XGBClassifier(
random_state=42,
eval_metric="logloss" if self.binary else "mlogloss",
objective="binary:logistic" if self.binary else "multi:softprob",
**self.xgb_params
)
if self.smote_k_neighbors is not None:
return ImbPipeline([
("preprocess", preprocessor),
("smote", SMOTE(random_state=42, k_neighbors=self.smote_k_neighbors)),
("clf", classifier)
])
else:
return Pipeline([
("preprocess", preprocessor),
("clf", classifier)
])
def fit(self, X: pd.DataFrame, y: pd.Series):
self.pipeline.fit(X, y)
return self
def predict(self, X: Union[pd.DataFrame, List[Dict], List[str]]) -> Any:
X_proc = self._ensure_features(X)
return self.pipeline.predict(X_proc)
def predict_proba(self, X: Union[pd.DataFrame, List[Dict], List[str]]) -> Any:
X_proc = self._ensure_features(X)
return self.pipeline.predict_proba(X_proc)
def save(self, path: Union[str, Path]):
joblib.dump(self, str(path))
@classmethod
def load(cls, path: Union[str, Path]) -> "GraphEdgeClassifier":
return joblib.load(str(path))
@staticmethod
def extract_graph_features(
protac_smiles: Union[str, List[str]],
wh_smiles: Optional[Union[str, List[str]]] = None,
lk_smiles: Optional[Union[str, List[str]]] = None,
e3_smiles: Optional[Union[str, List[str]]] = None,
n_bits: int = 512,
radius: int = 6,
descriptor_names: Optional[List[str]] = None,
verbose: int = 0
) -> pd.DataFrame:
if any(x is None for x in [wh_smiles, lk_smiles, e3_smiles]):
# Get features from PROTAC only, for inference
return extract_edge_features(
protac_smiles=protac_smiles,
n_bits=n_bits,
radius=radius,
descriptor_names=descriptor_names,
)
else:
# Get features and labels from all components, for training
return get_edge_features(
protac_smiles=protac_smiles,
wh_smiles=wh_smiles,
lk_smiles=lk_smiles,
e3_smiles=e3_smiles,
n_bits=n_bits,
radius=radius,
descriptor_names=descriptor_names,
verbose=verbose
)
@staticmethod
def build_multiclass_target(
df: pd.DataFrame,
poi_attachment_id: int = 1,
e3_attachment_id: int = 2,
) -> pd.Series:
"""
Returns multiclass target: 0 = no split, 1 = E3 split, 2 = WH split
"""
assert ((df["label_e3_split"] + df["label_wh_split"]) <= 1).all()
y = (
df["label_wh_split"] * poi_attachment_id +
df["label_e3_split"] * e3_attachment_id
)
return y.astype("int32")
def _ensure_features(self, X: Union[pd.DataFrame, List[Dict], List[str]]) -> pd.DataFrame:
""" Filter out features/columns that are are not used in the pipeline. """
required_columns = (
(self.graph_features or []) +
(self.categorical_features or []) +
(self.descriptor_features or []) +
(self.fingerprint_features or [])
)
# If input is a DataFrame with SMILES, assume already featurized
if isinstance(X, pd.DataFrame):
Xf = X
elif isinstance(X, list) and isinstance(X[0], dict):
Xf = pd.DataFrame(X)
else:
raise ValueError("Provide either a DataFrame or list of feature dicts. Use extract_graph_features for SMILES.")
missing = set(required_columns) - set(Xf.columns)
if missing:
raise ValueError(f"Input data missing required columns: {missing}")
return Xf[required_columns].copy()
def predict_proba_from_smiles(
self,
protac_smiles: Union[str, List[str]],
wh_smiles: Union[str, List[str]],
lk_smiles: Union[str, List[str]],
e3_smiles: Union[str, List[str]],
verbose: int = 0,
):
features = self.extract_graph_features(
protac_smiles, wh_smiles, lk_smiles, e3_smiles,
n_bits=self.n_bits,
radius=self.radius,
descriptor_names=self.descriptor_names,
verbose=verbose
)
Xf = self._ensure_features(features)
return self.pipeline.predict_proba(Xf)
def predict_from_smiles(
self,
protac_smiles: Union[str, List[str]],
wh_smiles: Union[str, List[str]],
lk_smiles: Union[str, List[str]],
e3_smiles: Union[str, List[str]],
top_n: int = 1,
return_array: bool = True,
verbose: int = 0,
) -> Union[pd.DataFrame, np.ndarray]:
"""
For binary classification:
For each SMILES, return the top_n edge chem_bond_idx indices among those predicted as class 1,
sorted by predicted probability. If not enough edges are class 1, pad with -1.
For multiclass:
For each SMILES, return the chem_bond_idx with highest probability for class 1 (E3 split)
and for class 2 (WH split). Shape: (num_smiles, 2).
If no edge is predicted as that class, value is -1.
"""
features = self.extract_graph_features(
protac_smiles, wh_smiles, lk_smiles, e3_smiles,
n_bits=self.n_bits,
radius=self.radius,
descriptor_names=self.descriptor_names,
verbose=verbose
)
Xf = self._ensure_features(features)
pred_proba = self.pipeline.predict_proba(Xf)
pred_label = self.pipeline.predict(Xf)
features = features.copy()
features["pred_label"] = pred_label
features["pred_proba"] = pred_proba[:, 1] if pred_proba.shape[1] > 1 else pred_proba[:, 0]
# NOTE: The SMILES is repeated for each edge, so we can drop duplicates
# and group by SMILES to get the top_n edges per SMILES.
unique_smiles = pd.Series(features["chem_mol_smiles"]).drop_duplicates().tolist()
groupby = features.groupby("chem_mol_smiles")
results = []
if return_array:
if pred_proba.shape[1] == 2: # Binary case
for mol_smiles in unique_smiles:
group = groupby.get_group(mol_smiles)
# Sort by proba, take top_n
if top_n < 0:
top_n = len(group["graph_num_bridges"])
top_edges = group.nlargest(top_n, "pred_proba")
idxs = top_edges["chem_bond_idx"].to_numpy()
if len(idxs) < top_n:
idxs = np.pad(idxs, (0, top_n - len(idxs)), constant_values=-1)
results.append(idxs[:top_n])
return np.vstack(results)
else: # Multiclass case
for mol_smiles in unique_smiles:
group = groupby.get_group(mol_smiles)
# For class 1
class1_idx = -1
if (group["pred_label"] == 1).any():
# Take the edge with highest class-1 probability
mask = group["pred_label"] == 1
idx1 = group.loc[mask, "pred_proba"].idxmax()
class1_idx = group.loc[idx1, "chem_bond_idx"]
# For class 2
class2_idx = -1
if (group["pred_label"] == 2).any():
mask = group["pred_label"] == 2
idx2 = group.loc[mask, "pred_proba"].idxmax()
class2_idx = group.loc[idx2, "chem_bond_idx"]
results.append([class1_idx, class2_idx])
return np.array(results, dtype=int)
else:
return features
def get_classification_report(y_true, y_pred, labels):
report = classification_report(y_true, y_pred, target_names=labels, output_dict=True)
df_report = pd.DataFrame(report).transpose().round(2)
print(df_report)
return df_report
def plot_confusion_matrix(y_true, y_pred, labels):
cm = confusion_matrix(y_true, y_pred)
if HAS_VISUALIZATION:
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=labels, yticklabels=labels)
plt.xlabel("Predicted")
plt.ylabel("True")
plt.title("Confusion Matrix")
plt.show()
else:
print("Visualization libraries not available. Skipping confusion matrix plot.")
print("Confusion Matrix:")
print(cm)
def get_classification_report_and_plot(y_true, y_pred, labels):
report = get_classification_report(y_true, y_pred, labels)
plot_confusion_matrix(y_true, y_pred, labels)
return report
def train_edge_classifier(
train_df: pd.DataFrame,
val_df: Optional[pd.DataFrame] = None,
test_df: Optional[pd.DataFrame] = None,
model_filename: Optional[Union[str, Path]] = None,
edge_classifier_kwargs: Optional[Dict[str, Any]] = None,
cache_dir: Optional[Union[str, Path]] = None,
return_reports: bool = True,
plot_confusion_matrix: bool = False,
) -> GraphEdgeClassifier:
"""
Train an edge-level graph classifier for PROTACs.
Args:
train_df (pd.DataFrame): Training data with columns:
- 'PROTAC SMILES'
- 'POI Ligand SMILES with direction'
- 'Linker SMILES with direction'
- 'E3 Binder SMILES with direction'
val_df (Optional[pd.DataFrame]): Validation data, same format as train_df.
test_df (Optional[pd.DataFrame]): Test data, same format as train_df.
model_filename (Optional[Union[str, Path]]): Path to save the trained model.
edge_classifier_kwargs (Optional[Dict[str, Any]]): Additional parameters for GraphEdgeClassifier.
return_reports (bool): Whether to return classification reports for validation and test sets.
Returns:
GraphEdgeClassifier: Trained edge classifier instance.
"""
sets = {}
for set_name, df in [
("train", train_df),
("val", val_df),
("test", test_df),
]:
if cache_dir is not None:
cache_path = Path(cache_dir) / f"{set_name}.csv"
if cache_path.exists():
print(f"Loading cached features for {set_name} from {cache_path}")
sets[set_name] = pd.read_csv(cache_path)
continue
else:
print(f"Cache not found for {set_name}, extracting features...")
if df is None or df.empty:
continue
print(f"Set: {set_name}, size: {len(df):,}")
if 'PROTAC SMILES' not in df.columns or \
'POI Ligand SMILES with direction' not in df.columns or \
'Linker SMILES with direction' not in df.columns or \
'E3 Binder SMILES with direction' not in df.columns:
raise ValueError(f"DataFrame for {set_name} is missing required columns: 'PROTAC SMILES', 'POI Ligand SMILES with direction', 'Linker SMILES with direction', 'E3 Binder SMILES with direction'.")
sets[set_name] = GraphEdgeClassifier.extract_graph_features(
df['PROTAC SMILES'].tolist(),
df['POI Ligand SMILES with direction'].tolist(),
df['Linker SMILES with direction'].tolist(),
df['E3 Binder SMILES with direction'].tolist(),
verbose=1,
)
# Drop rows with label_e3_split + label_wh_split > 1
sets[set_name] = sets[set_name][(sets[set_name]["label_e3_split"] + sets[set_name]["label_wh_split"]) <= 1]
print(f"Set: {set_name}, size: {len(sets[set_name]):,}")
if cache_dir is not None:
cache_path = Path(cache_dir) / f"{set_name}.csv"
cache_path.parent.mkdir(parents=True, exist_ok=True)
sets[set_name].to_csv(cache_path, index=False)
print(f"Saved {set_name} features to {cache_path}")
train_set = sets["train"]
label_cols = [c for c in train_set.columns if c.startswith("label_")]
train_set = train_set.dropna(subset=label_cols)
train_set = train_set[(train_set["label_e3_split"] + train_set["label_wh_split"]) <= 1]
X_train = train_set.drop(columns=label_cols)
# Instantiate and train
clf = GraphEdgeClassifier(**edge_classifier_kwargs or {
"graph_features": [c for c in X_train.columns if c.startswith("graph_")],
"categorical_features": ["chem_bond_type", "chem_atom_u", "chem_atom_v"],
"fingerprint_features": [c for c in X_train.columns if c.startswith("chem_mol_fp_")],
"use_descriptors": False,
"use_fingerprints": True,
"n_svd_components": 50,
"binary": True,
"smote_k_neighbors": 10,
"xgb_params": {
"max_depth": 6,
"learning_rate": 0.3,
"alpha": 0.1, # Default: 0
"lambda": 0.5, # Default: 1
"gamma": 0.1, # Default: 0
},
})
# Prepare target variable according to classification type
if clf.binary:
y_train = train_set["label_is_split"].astype("int32")
else:
y_train = GraphEdgeClassifier.build_multiclass_target(train_set)
print(f"Training set size: {len(X_train):,}, labels: {y_train.unique()}")
clf.fit(X_train, y_train)
print("Training complete.")
if model_filename is not None:
clf.save(model_filename)
print(f"Model saved to {model_filename}")
target_labels = ["No Split", "Split"] if clf.binary else ["No Split", "WH-Linker", "E3-Linker"]
report = None
if "val" in sets:
# Get validation data
val_set = sets["val"].dropna(subset=label_cols)
val_set = val_set[(val_set["label_e3_split"] + val_set["label_wh_split"]) <= 1]
X_val = val_set.drop(columns=label_cols)
y_val = val_set["label_is_split"].astype("int32") if clf.binary else GraphEdgeClassifier.build_multiclass_target(val_set)
y_pred = clf.predict(X_val)
if plot_confusion_matrix:
report = get_classification_report_and_plot(y_val, y_pred, target_labels)
else:
report = get_classification_report(y_val, y_pred, target_labels)
print(f"Validation set classification report:\n{report.to_markdown(index=False)}")
if "test" in sets:
# Get test data
test_set = sets["test"].dropna(subset=label_cols)
test_set = test_set[(test_set["label_e3_split"] + test_set["label_wh_split"]) <= 1]
X_test = test_set.drop(columns=label_cols)
y_test = test_set["label_is_split"].astype("int32") if clf.binary else GraphEdgeClassifier.build_multiclass_target(test_set)
y_pred = clf.predict(X_test)
if plot_confusion_matrix:
report = get_classification_report_and_plot(y_test, y_pred, target_labels)
else:
report = get_classification_report(y_test, y_pred, target_labels)
print(f"Test set classification report:\n{report.to_markdown(index=False)}")
if return_reports:
return clf, report
else:
return clf
def objective(trial, train_df, val_df):
# HP space
max_depth = trial.suggest_int("max_depth", 3, 10)
learning_rate = trial.suggest_float("learning_rate", 0.01, 0.3, log=True)
alpha = trial.suggest_float("alpha", 0.0, 2.0)
reg_lambda = trial.suggest_float("lambda", 0.0, 2.0)
gamma = trial.suggest_float("gamma", 0.0, 1.0)
n_svd_components = trial.suggest_int("n_svd_components", 16, 128)
smote_k_neighbors = trial.suggest_int("smote_k_neighbors", 3, 15)
use_descriptors = trial.suggest_categorical("use_descriptors", [False, True])
use_fingerprints = trial.suggest_categorical("use_fingerprints", [True, False])
edge_classifier_kwargs = {
"graph_features": None, # Will be set in train_edge_classifier
"categorical_features": None,
"fingerprint_features": None,
"use_descriptors": use_descriptors,
"use_fingerprints": use_fingerprints,
"n_svd_components": n_svd_components,
"binary": True,
"smote_k_neighbors": smote_k_neighbors,
"xgb_params": {
"max_depth": max_depth,
"learning_rate": learning_rate,
"alpha": alpha,
"lambda": reg_lambda,
"gamma": gamma,
},
}
_, val_report = train_edge_classifier(
train_df=train_df,
val_df=val_df,
edge_classifier_kwargs=edge_classifier_kwargs,
return_reports=True,
)
# Evaluate metrics on validation set
# Assume val_report has columns: ['Label', 'precision', 'recall', 'f1-score', 'support']
# and that the binary positive class is "Split" or "1"
try:
f1_1 = float(val_report[val_report["Label"].isin(["Split", 1, "1"])]["f1-score"])
except Exception:
f1_1 = 0.0
try:
acc = float(val_report[val_report["Label"] == "accuracy"]["f1-score"])
except Exception:
acc = 0.0
# Multi-objective: prioritize F1 for minority class, but keep accuracy
# Adjust weight depending on task (here equal)
score = 0.5 * acc + 0.5 * f1_1
return score
def run_optuna_search(
train_df: pd.DataFrame,
val_df: pd.DataFrame,
n_trials: int = 50,
study_name: str = "edge_classifier_hp_search",
study_dir: str = "./optuna_studies",
seed: int = 42,
) -> Any:
import os
os.makedirs(study_dir, exist_ok=True)
study_path = f"sqlite:///{os.path.join(study_dir, study_name)}.db"
study = optuna.create_study(
study_name=study_name,
direction="maximize",
sampler=QMCSampler(seed=seed, qmc_type="sobol"),
storage=study_path,
load_if_exists=True,
)
func = lambda trial: objective(trial, train_df, val_df)
study.optimize(func, n_trials=n_trials, show_progress_bar=True)
print("Best trial:")
print(study.best_trial)
# Train classifier with best HP and return it
best_params = study.best_trial.params
edge_classifier_kwargs = {
"graph_features": None,
"categorical_features": None,
"fingerprint_features": None,
"use_descriptors": best_params["use_descriptors"],
"use_fingerprints": best_params["use_fingerprints"],
"n_svd_components": best_params["n_svd_components"],
"binary": True,
"smote_k_neighbors": best_params["smote_k_neighbors"],
"xgb_params": {
"max_depth": best_params["max_depth"],
"learning_rate": best_params["learning_rate"],
"alpha": best_params["alpha"],
"lambda": best_params["lambda"],
"gamma": best_params["gamma"],
},
}
clf, _ = train_edge_classifier(
train_df=train_df,
val_df=val_df,
edge_classifier_kwargs=edge_classifier_kwargs,
return_reports=True,
)
study_file = os.path.join(study_dir, f"{study_name}_study.pkl")
import joblib
joblib.dump(study, study_file)
print(f"Optuna study saved to {study_file}")
return clf, study |