File size: 23,432 Bytes
9dd777e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2842604
 
9dd777e
 
 
 
 
 
 
 
 
 
2842604
 
 
9dd777e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
import joblib
from pathlib import Path
from typing import Optional, List, Dict, Union, Any, Literal

import pandas as pd
import numpy as np
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.decomposition import TruncatedSVD
from imblearn.over_sampling import SMOTE
from imblearn.pipeline import Pipeline as ImbPipeline
from sklearn.pipeline import Pipeline
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from xgboost import XGBClassifier
import optuna
from optuna.samplers import QMCSampler
from sklearn.metrics import accuracy_score, f1_score

try:
    import seaborn as sns
    import matplotlib.pyplot as plt
    HAS_VISUALIZATION = True
except ImportError:
    HAS_VISUALIZATION = False    

from .edge_features import extract_edge_features, get_edge_features


class GraphEdgeClassifier(BaseEstimator, ClassifierMixin):
    """
    Edge-level graph classifier for PROTACs with integrated pipeline building.
    """
    def __init__(
        self,
        graph_features: List[str],
        categorical_features: Optional[List[str]] = None,
        descriptor_features: Optional[List[str]] = None,
        fingerprint_features: Optional[List[str]] = None,
        use_descriptors: bool = True,
        use_fingerprints: bool = True,
        scaler_graph: Literal["passthrough", "standard"] = "passthrough",
        scaler_desc: Literal["passthrough", "standard"] = "passthrough",
        use_svd_fp: bool = True,
        n_svd_components: int = 100,
        binary: bool = False,
        smote_k_neighbors: Optional[int] = 5,
        xgb_params: Optional[dict] = None,
        n_bits: int = 512,
        radius: int = 6,
        descriptor_names: Optional[List[str]] = None
    ):
        self.graph_features = graph_features
        self.categorical_features = categorical_features
        self.descriptor_features = descriptor_features
        self.fingerprint_features = fingerprint_features
        self.use_descriptors = use_descriptors
        self.use_fingerprints = use_fingerprints
        self.scaler_graph = scaler_graph
        self.scaler_desc = scaler_desc
        self.use_svd_fp = use_svd_fp
        self.n_svd_components = n_svd_components
        self.binary = binary
        self.smote_k_neighbors = smote_k_neighbors
        self.xgb_params = xgb_params or {}
        self.n_bits = n_bits
        self.radius = radius
        self.descriptor_names = descriptor_names or [
            "MolWt", "HeavyAtomCount", "NumHAcceptors", "NumHDonors",
            "TPSA", "NumRotatableBonds", "RingCount", "MolLogP"
        ]
        self.pipeline = self._build_pipeline()

    def _build_pipeline(self):
        transformers = []
        if self.categorical_features:
            transformers.append(("cat", OneHotEncoder(handle_unknown="ignore"), self.categorical_features))
        if self.scaler_graph == "standard":
            transformers.append(("num", StandardScaler(), self.graph_features))
        else:
            transformers.append(("num", "passthrough", self.graph_features))

        if self.use_descriptors and self.descriptor_features:
            desc_block = (
                ("desc", StandardScaler(), self.descriptor_features)
                if self.scaler_desc == "standard"
                else ("desc", "passthrough", self.descriptor_features)
            )
            transformers.append(desc_block)

        if self.use_fingerprints and self.fingerprint_features:
            if self.use_svd_fp:
                fp_block = ("fp",
                    ImbPipeline([
                        ("svd", TruncatedSVD(n_components=self.n_svd_components, random_state=42))
                    ]),
                    self.fingerprint_features)
            else:
                fp_block = ("fp", "passthrough", self.fingerprint_features)
            transformers.append(fp_block)

        preprocessor = ColumnTransformer(transformers)

        # Define the classifier
        classifier = XGBClassifier(
            random_state=42,
            eval_metric="logloss" if self.binary else "mlogloss",
            objective="binary:logistic" if self.binary else "multi:softprob",
            **self.xgb_params
        )

        if self.smote_k_neighbors is not None:
            return ImbPipeline([
                ("preprocess", preprocessor),
                ("smote", SMOTE(random_state=42, k_neighbors=self.smote_k_neighbors)),
                ("clf", classifier)
            ])
        else:
            return Pipeline([
                ("preprocess", preprocessor),
                ("clf", classifier)
            ])

    def fit(self, X: pd.DataFrame, y: pd.Series):
        self.pipeline.fit(X, y)
        return self

    def predict(self, X: Union[pd.DataFrame, List[Dict], List[str]]) -> Any:
        X_proc = self._ensure_features(X)
        return self.pipeline.predict(X_proc)

    def predict_proba(self, X: Union[pd.DataFrame, List[Dict], List[str]]) -> Any:
        X_proc = self._ensure_features(X)
        return self.pipeline.predict_proba(X_proc)

    def save(self, path: Union[str, Path]):
        joblib.dump(self, str(path))

    @classmethod
    def load(cls, path: Union[str, Path]) -> "GraphEdgeClassifier":
        return joblib.load(str(path))

    @staticmethod
    def extract_graph_features(
        protac_smiles: Union[str, List[str]],
        wh_smiles: Optional[Union[str, List[str]]] = None,
        lk_smiles: Optional[Union[str, List[str]]] = None,
        e3_smiles: Optional[Union[str, List[str]]] = None,
        n_bits: int = 512,
        radius: int = 6,
        descriptor_names: Optional[List[str]] = None,
        verbose: int = 0
    ) -> pd.DataFrame:
        if any(x is None for x in [wh_smiles, lk_smiles, e3_smiles]):
            # Get features from PROTAC only, for inference
            return extract_edge_features(
                protac_smiles=protac_smiles,
                n_bits=n_bits,
                radius=radius,
                descriptor_names=descriptor_names,
            )
        else:
            # Get features and labels from all components, for training
            return get_edge_features(
                protac_smiles=protac_smiles,
                wh_smiles=wh_smiles,
                lk_smiles=lk_smiles,
                e3_smiles=e3_smiles,
                n_bits=n_bits,
                radius=radius,
                descriptor_names=descriptor_names,
                verbose=verbose
            )

    @staticmethod
    def build_multiclass_target(
        df: pd.DataFrame,
        poi_attachment_id: int = 1,
        e3_attachment_id: int = 2,
    ) -> pd.Series:
        """
        Returns multiclass target: 0 = no split, 1 = E3 split, 2 = WH split
        """
        assert ((df["label_e3_split"] + df["label_wh_split"]) <= 1).all()
        y = (
            df["label_wh_split"] * poi_attachment_id +
            df["label_e3_split"] * e3_attachment_id
        )
        return y.astype("int32")

    def _ensure_features(self, X: Union[pd.DataFrame, List[Dict], List[str]]) -> pd.DataFrame:
        """ Filter out features/columns that are are not used in the pipeline. """
        required_columns = (
            (self.graph_features or []) +
            (self.categorical_features or []) +
            (self.descriptor_features or []) +
            (self.fingerprint_features or [])
        )
        # If input is a DataFrame with SMILES, assume already featurized
        if isinstance(X, pd.DataFrame):
            Xf = X
        elif isinstance(X, list) and isinstance(X[0], dict):
            Xf = pd.DataFrame(X)
        else:
            raise ValueError("Provide either a DataFrame or list of feature dicts. Use extract_graph_features for SMILES.")
        missing = set(required_columns) - set(Xf.columns)
        if missing:
            raise ValueError(f"Input data missing required columns: {missing}")
        return Xf[required_columns].copy()

    def predict_proba_from_smiles(
        self,
        protac_smiles: Union[str, List[str]],
        wh_smiles: Union[str, List[str]],
        lk_smiles: Union[str, List[str]],
        e3_smiles: Union[str, List[str]],
        verbose: int = 0,
    ):
        features = self.extract_graph_features(
            protac_smiles, wh_smiles, lk_smiles, e3_smiles,
            n_bits=self.n_bits,
            radius=self.radius,
            descriptor_names=self.descriptor_names,
            verbose=verbose
        )
        Xf = self._ensure_features(features)
        return self.pipeline.predict_proba(Xf)

    def predict_from_smiles(
        self,
        protac_smiles: Union[str, List[str]],
        wh_smiles: Union[str, List[str]],
        lk_smiles: Union[str, List[str]],
        e3_smiles: Union[str, List[str]],
        top_n: int = 1,
        return_array: bool = True,
        verbose: int = 0,
    ) -> Union[pd.DataFrame, np.ndarray]:
        """
        For binary classification:
            For each SMILES, return the top_n edge chem_bond_idx indices among those predicted as class 1,
            sorted by predicted probability. If not enough edges are class 1, pad with -1.
        For multiclass:
            For each SMILES, return the chem_bond_idx with highest probability for class 1 (E3 split)
            and for class 2 (WH split). Shape: (num_smiles, 2).
            If no edge is predicted as that class, value is -1.
        """
        features = self.extract_graph_features(
            protac_smiles, wh_smiles, lk_smiles, e3_smiles,
            n_bits=self.n_bits,
            radius=self.radius,
            descriptor_names=self.descriptor_names,
            verbose=verbose
        )
        Xf = self._ensure_features(features)
        pred_proba = self.pipeline.predict_proba(Xf)
        pred_label = self.pipeline.predict(Xf)
        features = features.copy()
        features["pred_label"] = pred_label
        features["pred_proba"] = pred_proba[:, 1] if pred_proba.shape[1] > 1 else pred_proba[:, 0]

        # NOTE: The SMILES is repeated for each edge, so we can drop duplicates
        # and group by SMILES to get the top_n edges per SMILES.
        unique_smiles = pd.Series(features["chem_mol_smiles"]).drop_duplicates().tolist()
        groupby = features.groupby("chem_mol_smiles")

        results = []

        if return_array:
            if pred_proba.shape[1] == 2:  # Binary case
                for mol_smiles in unique_smiles:
                    group = groupby.get_group(mol_smiles)
                    # Sort by proba, take top_n
                    if top_n < 0:
                        top_n = len(group["graph_num_bridges"])
                    top_edges = group.nlargest(top_n, "pred_proba")
                    idxs = top_edges["chem_bond_idx"].to_numpy()
                    if len(idxs) < top_n:
                        idxs = np.pad(idxs, (0, top_n - len(idxs)), constant_values=-1)
                    results.append(idxs[:top_n])
                return np.vstack(results)
            else:  # Multiclass case
                for mol_smiles in unique_smiles:
                    group = groupby.get_group(mol_smiles)
                    # For class 1
                    class1_idx = -1
                    if (group["pred_label"] == 1).any():
                        # Take the edge with highest class-1 probability
                        mask = group["pred_label"] == 1
                        idx1 = group.loc[mask, "pred_proba"].idxmax()
                        class1_idx = group.loc[idx1, "chem_bond_idx"]
                    # For class 2
                    class2_idx = -1
                    if (group["pred_label"] == 2).any():
                        mask = group["pred_label"] == 2
                        idx2 = group.loc[mask, "pred_proba"].idxmax()
                        class2_idx = group.loc[idx2, "chem_bond_idx"]
                    results.append([class1_idx, class2_idx])
                return np.array(results, dtype=int)
        else:
            return features

def get_classification_report(y_true, y_pred, labels):
    report = classification_report(y_true, y_pred, target_names=labels, output_dict=True)
    df_report = pd.DataFrame(report).transpose().round(2)
    print(df_report)
    return df_report

def plot_confusion_matrix(y_true, y_pred, labels):
    cm = confusion_matrix(y_true, y_pred)
    if HAS_VISUALIZATION:
        plt.figure(figsize=(8, 6))
        sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=labels, yticklabels=labels)
        plt.xlabel("Predicted")
        plt.ylabel("True")
        plt.title("Confusion Matrix")
        plt.show()
    else:
        print("Visualization libraries not available. Skipping confusion matrix plot.")
        print("Confusion Matrix:")
        print(cm)

def get_classification_report_and_plot(y_true, y_pred, labels):
    report = get_classification_report(y_true, y_pred, labels)
    plot_confusion_matrix(y_true, y_pred, labels)
    return report

def train_edge_classifier(
    train_df: pd.DataFrame,
    val_df: Optional[pd.DataFrame] = None,
    test_df: Optional[pd.DataFrame] = None,
    model_filename: Optional[Union[str, Path]] = None,
    edge_classifier_kwargs: Optional[Dict[str, Any]] = None,
    cache_dir: Optional[Union[str, Path]] = None,
    return_reports: bool = True,
    plot_confusion_matrix: bool = False,
) -> GraphEdgeClassifier:
    """
    Train an edge-level graph classifier for PROTACs.
    
    Args:
        train_df (pd.DataFrame): Training data with columns:
            - 'PROTAC SMILES'
            - 'POI Ligand SMILES with direction'
            - 'Linker SMILES with direction'
            - 'E3 Binder SMILES with direction'
        val_df (Optional[pd.DataFrame]): Validation data, same format as train_df.
        test_df (Optional[pd.DataFrame]): Test data, same format as train_df.
        model_filename (Optional[Union[str, Path]]): Path to save the trained model.
        edge_classifier_kwargs (Optional[Dict[str, Any]]): Additional parameters for GraphEdgeClassifier.
        return_reports (bool): Whether to return classification reports for validation and test sets.

    Returns:
        GraphEdgeClassifier: Trained edge classifier instance.
    """
    sets = {}
    for set_name, df in [
        ("train", train_df),
        ("val", val_df),
        ("test", test_df),
    ]:
        if cache_dir is not None:
            cache_path = Path(cache_dir) / f"{set_name}.csv"
            if cache_path.exists():
                print(f"Loading cached features for {set_name} from {cache_path}")
                sets[set_name] = pd.read_csv(cache_path)
                continue
            else:
                print(f"Cache not found for {set_name}, extracting features...")

        if df is None or df.empty:
            continue

        print(f"Set: {set_name}, size: {len(df):,}")
        if 'PROTAC SMILES' not in df.columns or \
           'POI Ligand SMILES with direction' not in df.columns or \
           'Linker SMILES with direction' not in df.columns or \
           'E3 Binder SMILES with direction' not in df.columns:
            raise ValueError(f"DataFrame for {set_name} is missing required columns: 'PROTAC SMILES', 'POI Ligand SMILES with direction', 'Linker SMILES with direction', 'E3 Binder SMILES with direction'.")
        
        sets[set_name] = GraphEdgeClassifier.extract_graph_features(
            df['PROTAC SMILES'].tolist(),
            df['POI Ligand SMILES with direction'].tolist(),
            df['Linker SMILES with direction'].tolist(),
            df['E3 Binder SMILES with direction'].tolist(),
            verbose=1,
        )
        # Drop rows with label_e3_split + label_wh_split > 1
        sets[set_name] = sets[set_name][(sets[set_name]["label_e3_split"] + sets[set_name]["label_wh_split"]) <= 1]
        print(f"Set: {set_name}, size: {len(sets[set_name]):,}")
        if cache_dir is not None:
            cache_path = Path(cache_dir) / f"{set_name}.csv"
            cache_path.parent.mkdir(parents=True, exist_ok=True)
            sets[set_name].to_csv(cache_path, index=False)
            print(f"Saved {set_name} features to {cache_path}")
        
    train_set = sets["train"]
    label_cols = [c for c in train_set.columns if c.startswith("label_")]
    train_set = train_set.dropna(subset=label_cols)
    train_set = train_set[(train_set["label_e3_split"] + train_set["label_wh_split"]) <= 1]
    X_train = train_set.drop(columns=label_cols)

    # Instantiate and train
    clf = GraphEdgeClassifier(**edge_classifier_kwargs or {
        "graph_features": [c for c in X_train.columns if c.startswith("graph_")],
        "categorical_features": ["chem_bond_type", "chem_atom_u", "chem_atom_v"],
        "fingerprint_features": [c for c in X_train.columns if c.startswith("chem_mol_fp_")],
        "use_descriptors": False,
        "use_fingerprints": True,
        "n_svd_components": 50,
        "binary": True,
        "smote_k_neighbors": 10,
        "xgb_params": {
            "max_depth": 6,
            "learning_rate": 0.3,
            "alpha": 0.1, # Default: 0
            "lambda": 0.5, # Default: 1
            "gamma": 0.1, # Default: 0
        },
    })

    # Prepare target variable according to classification type
    if clf.binary:
        y_train = train_set["label_is_split"].astype("int32")
    else:
        y_train = GraphEdgeClassifier.build_multiclass_target(train_set)

    print(f"Training set size: {len(X_train):,}, labels: {y_train.unique()}")
    clf.fit(X_train, y_train)
    print("Training complete.")
    
    if model_filename is not None:
        clf.save(model_filename)
        print(f"Model saved to {model_filename}")

    target_labels = ["No Split", "Split"] if clf.binary else ["No Split", "WH-Linker", "E3-Linker"]

    report = None
    if "val" in sets:
        # Get validation data
        val_set = sets["val"].dropna(subset=label_cols)
        val_set = val_set[(val_set["label_e3_split"] + val_set["label_wh_split"]) <= 1]
        X_val = val_set.drop(columns=label_cols)
        y_val = val_set["label_is_split"].astype("int32") if clf.binary else GraphEdgeClassifier.build_multiclass_target(val_set)
        y_pred = clf.predict(X_val)
        if plot_confusion_matrix:
            report = get_classification_report_and_plot(y_val, y_pred, target_labels)
        else:
            report = get_classification_report(y_val, y_pred, target_labels)
        print(f"Validation set classification report:\n{report.to_markdown(index=False)}")

    if "test" in sets:
        # Get test data
        test_set = sets["test"].dropna(subset=label_cols)
        test_set = test_set[(test_set["label_e3_split"] + test_set["label_wh_split"]) <= 1]
        X_test = test_set.drop(columns=label_cols)
        y_test = test_set["label_is_split"].astype("int32") if clf.binary else GraphEdgeClassifier.build_multiclass_target(test_set)
        y_pred = clf.predict(X_test)
        if plot_confusion_matrix:
            report = get_classification_report_and_plot(y_test, y_pred, target_labels)
        else:
            report = get_classification_report(y_test, y_pred, target_labels)
        print(f"Test set classification report:\n{report.to_markdown(index=False)}")

    if return_reports:
        return clf, report
    else:
        return clf


def objective(trial, train_df, val_df):
    # HP space
    max_depth = trial.suggest_int("max_depth", 3, 10)
    learning_rate = trial.suggest_float("learning_rate", 0.01, 0.3, log=True)
    alpha = trial.suggest_float("alpha", 0.0, 2.0)
    reg_lambda = trial.suggest_float("lambda", 0.0, 2.0)
    gamma = trial.suggest_float("gamma", 0.0, 1.0)
    n_svd_components = trial.suggest_int("n_svd_components", 16, 128)
    smote_k_neighbors = trial.suggest_int("smote_k_neighbors", 3, 15)
    use_descriptors = trial.suggest_categorical("use_descriptors", [False, True])
    use_fingerprints = trial.suggest_categorical("use_fingerprints", [True, False])

    edge_classifier_kwargs = {
        "graph_features": None,  # Will be set in train_edge_classifier
        "categorical_features": None,
        "fingerprint_features": None,
        "use_descriptors": use_descriptors,
        "use_fingerprints": use_fingerprints,
        "n_svd_components": n_svd_components,
        "binary": True,
        "smote_k_neighbors": smote_k_neighbors,
        "xgb_params": {
            "max_depth": max_depth,
            "learning_rate": learning_rate,
            "alpha": alpha,
            "lambda": reg_lambda,
            "gamma": gamma,
        },
    }

    _, val_report = train_edge_classifier(
        train_df=train_df,
        val_df=val_df,
        edge_classifier_kwargs=edge_classifier_kwargs,
        return_reports=True,
    )

    # Evaluate metrics on validation set
    # Assume val_report has columns: ['Label', 'precision', 'recall', 'f1-score', 'support']
    # and that the binary positive class is "Split" or "1"
    try:
        f1_1 = float(val_report[val_report["Label"].isin(["Split", 1, "1"])]["f1-score"])
    except Exception:
        f1_1 = 0.0
    try:
        acc = float(val_report[val_report["Label"] == "accuracy"]["f1-score"])
    except Exception:
        acc = 0.0

    # Multi-objective: prioritize F1 for minority class, but keep accuracy
    # Adjust weight depending on task (here equal)
    score = 0.5 * acc + 0.5 * f1_1
    return score

def run_optuna_search(
    train_df: pd.DataFrame,
    val_df: pd.DataFrame,
    n_trials: int = 50,
    study_name: str = "edge_classifier_hp_search",
    study_dir: str = "./optuna_studies",
    seed: int = 42,
) -> Any:
    import os
    os.makedirs(study_dir, exist_ok=True)
    study_path = f"sqlite:///{os.path.join(study_dir, study_name)}.db"

    study = optuna.create_study(
        study_name=study_name,
        direction="maximize",
        sampler=QMCSampler(seed=seed, qmc_type="sobol"),
        storage=study_path,
        load_if_exists=True,
    )
    func = lambda trial: objective(trial, train_df, val_df)
    study.optimize(func, n_trials=n_trials, show_progress_bar=True)

    print("Best trial:")
    print(study.best_trial)

    # Train classifier with best HP and return it
    best_params = study.best_trial.params
    edge_classifier_kwargs = {
        "graph_features": None,
        "categorical_features": None,
        "fingerprint_features": None,
        "use_descriptors": best_params["use_descriptors"],
        "use_fingerprints": best_params["use_fingerprints"],
        "n_svd_components": best_params["n_svd_components"],
        "binary": True,
        "smote_k_neighbors": best_params["smote_k_neighbors"],
        "xgb_params": {
            "max_depth": best_params["max_depth"],
            "learning_rate": best_params["learning_rate"],
            "alpha": best_params["alpha"],
            "lambda": best_params["lambda"],
            "gamma": best_params["gamma"],
        },
    }
    clf, _ = train_edge_classifier(
        train_df=train_df,
        val_df=val_df,
        edge_classifier_kwargs=edge_classifier_kwargs,
        return_reports=True,
    )
    study_file = os.path.join(study_dir, f"{study_name}_study.pkl")
    import joblib
    joblib.dump(study, study_file)
    print(f"Optuna study saved to {study_file}")
    return clf, study