File size: 12,305 Bytes
9dd777e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
from typing import Tuple, List

from rdkit import Chem
from rdkit.Chem import AllChem, Descriptors, Draw
import networkx as nx
import pandas as pd
import numpy as np
from tqdm import tqdm

from protac_splitter.chemoinformatics import get_atom_idx_at_attachment
from protac_splitter.display_utils import safe_display, get_mapped_protac_img


def bond_capacity(bond: Chem.Bond) -> int:
    """ Calculate the capacity of a bond based on its type and properties.
    Parameters:
        bond (Chem.Bond): The bond object from RDKit.
    Returns:
        int: The capacity of the bond, where higher values indicate less preference for cutting.
    """
    # High capacity for aromatic and ring bonds to avoid cutting them
    if bond.GetIsAromatic() or bond.IsInRing():
        return 1000  # very high capacity: avoid cutting aromatic bonds
    elif bond.GetBondType() == Chem.BondType.SINGLE:
        return 1     # low capacity: prefer to cut here
    elif bond.GetBondType() == Chem.BondType.DOUBLE:
        return 10    # medium penalty
    elif bond.GetBondType() == Chem.BondType.TRIPLE:
        return 20    # stronger penalty
    else:
        return 50    # fallback for unknown/rare types

def smiles_to_nx(
    smiles: str,
    use_capacity: bool = False,
) -> nx.Graph:
    """ Convert a SMILES string to a NetworkX graph.
    Parameters:
        smiles (str): The SMILES string to convert.
        use_capacity (bool): Whether to use bond capacity as edge weights.
    Returns:
        nx.Graph: The NetworkX graph representation of the molecule.
    """
    mol = Chem.MolFromSmiles(smiles)
    if mol is None:
        raise ValueError(f"Input SMILES could not be parsed: {smiles}")
    # Canonicalize the SMILES
    mol = Chem.MolFromSmiles(Chem.MolToSmiles(mol, canonical=True))
    if mol is None:
        raise ValueError(f"Input SMILES could not be canonicalized: {smiles}")
    # Convert SMILES to NetworkX graph
    G = nx.Graph()
    if use_capacity:
        for bond in mol.GetBonds():
            capacity = bond_capacity(bond)
            G.add_edge(bond.GetBeginAtomIdx(), bond.GetEndAtomIdx(), capacity=capacity)
    else:
        for bond in mol.GetBonds():
            G.add_edge(bond.GetBeginAtomIdx(), bond.GetEndAtomIdx())    
    return G

def extract_edge_features(
    protac_smiles: str,
    e3_split_pair: Tuple[int, int] = None,
    wh_split_pair: Tuple[int, int] = None,
    n_bits: int = 512,
    radius: int = 6,
    descriptor_names: List[str] = None,
    fp_as_string: bool = False,
) -> pd.DataFrame:
    """Extract features from the edges of a PROTAC molecule represented as a SMILES string.
    
    Parameters:
        protac_smiles (str): SMILES representation of the PROTAC molecule.
        e3_split_pair (Tuple[int, int]): Indices of the E3 split pair.
        wh_split_pair (Tuple[int, int]): Indices of the warhead split pair.
        n_bits (int): Number of bits for Morgan fingerprints.
        radius (int): Radius for Morgan fingerprints.
        descriptor_names (List[str]): List of RDKit descriptor names to compute.
        
    Returns:
        pd.DataFrame: DataFrame containing edge features.
    """
    mol = Chem.MolFromSmiles(protac_smiles)
    if mol is None:
        raise ValueError(f"Input SMILES could not be parsed: {protac_smiles}")
    # Canonicalize the SMILES
    mol = Chem.MolFromSmiles(Chem.MolToSmiles(mol, canonical=True))
    if mol is None:
        raise ValueError(f"Input SMILES could not be canonicalized: {protac_smiles}")

    # Step 1: Convert SMILES to NetworkX
    G = smiles_to_nx(protac_smiles, use_capacity=False)

    num_nodes = G.number_of_nodes()
    num_edges = G.number_of_edges()

    # Step 2: Create line graph and compute betweenness + degree
    LG = nx.line_graph(G)
    line_betweenness = nx.betweenness_centrality(LG, endpoints=True)
    betweenness = nx.betweenness_centrality(G, endpoints=True)

    # Compute k-hop degrees (number of nodes within 2, 3 hops)
    # TODO: Shall I get the degree of the node in the line graph or the original graph?
    line_degree = dict(LG.degree())
    line_degree_r2 = {}
    line_degree_r3 = {}
    for node in LG.nodes():
        # Nodes within radius 2 and 3 (excluding the center node)
        neighbors_r2 = nx.single_source_shortest_path_length(LG, node, cutoff=2)
        neighbors_r3 = nx.single_source_shortest_path_length(LG, node, cutoff=3)
        line_degree_r2[node] = len([n for n, d in neighbors_r2.items() if d == 2])
        line_degree_r3[node] = len([n for n, d in neighbors_r3.items() if d == 3])

    degree = dict(G.degree())
    degree_r2 = {}
    degree_r3 = {}
    for node in G.nodes():
        # Nodes within radius 2 and 3 (excluding the center node)
        neighbors_r2 = nx.single_source_shortest_path_length(G, node, cutoff=2)
        neighbors_r3 = nx.single_source_shortest_path_length(G, node, cutoff=3)
        degree_r2[node] = len([n for n, d in neighbors_r2.items() if d == 2])
        degree_r3[node] = len([n for n, d in neighbors_r3.items() if d == 3])

    if e3_split_pair is not None and wh_split_pair is not None:
        true_split_edges = {frozenset(e3_split_pair), frozenset(wh_split_pair)}

    # Get molecular characteristics, i.e., Morgan fingerprints and descriptors
    # Generate Morgan fingerprint
    fp_bitvec = AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=n_bits)
    fp = np.zeros((n_bits,), dtype=np.float32)
    AllChem.DataStructs.ConvertToNumpyArray(fp_bitvec, fp)
    if fp_as_string:
        fp = {"chem_mol_fp": "".join([str(int(bit)) for bit in fp])}
    else:
        fp = {f"chem_mol_fp_{i}": bool(fp[i]) for i in range(n_bits)}
    # Generate RDKit descriptors
    descriptor_func_names = descriptor_names or [
        "MolWt", "HeavyAtomCount", "NumHAcceptors", "NumHDonors",
        "TPSA", "NumRotatableBonds", "RingCount", "MolLogP"
    ]
    functions = [getattr(Descriptors, name) for name in descriptor_func_names]
    descriptors = {f"chem_mol_desc_{name}": func(mol) for name, func in zip(descriptor_func_names, functions)}

    # Step 3: Gather edge features
    # NOTE: Only consider bridge nodes
    edge_features = []
    for (u, v) in nx.bridges(G):
        bond = mol.GetBondBetweenAtoms(u, v)

        # Avoid reporting the same edge twice (i.e., swap u and v if needed) and
        # ensure to find the node pair in the line graph
        node = (u, v) if (u, v) in LG else (v, u)
        node_key = node if node in line_betweenness else (v, u)

        features = {
            "graph_num_nodes": num_nodes,
            "graph_num_edges": num_edges,
            "graph_betweenness": line_betweenness.get(node_key, 0.0),
            "graph_degree": line_degree.get(node_key, 0),
            "graph_degree_r2": line_degree_r2.get(node_key, 0),
            "graph_degree_r3": line_degree_r3.get(node_key, 0),
            "graph_node_u_degree": degree.get(u, 0),
            "graph_node_u_degree_r2": degree_r2.get(u, 0),
            "graph_node_u_degree_r3": degree_r3.get(u, 0),
            "graph_node_v_degree": degree.get(v, 0),
            "graph_node_v_degree_r2": degree_r2.get(v, 0),
            "graph_node_v_degree_r3": degree_r3.get(v, 0),
            "graph_node_u_betweenness": betweenness.get(u, 0.0),
            "graph_node_v_betweenness": betweenness.get(v, 0.0),
            "chem_bond_idx": bond.GetIdx(),
            "chem_bond_type": str(bond.GetBondType()),
            "chem_atom_u": mol.GetAtomWithIdx(u).GetSymbol(),
            "chem_atom_v": mol.GetAtomWithIdx(v).GetSymbol(),
            "chem_is_aromatic": bond.GetIsAromatic(),
            "chem_is_in_ring": bond.IsInRing(),
            "chem_mol_smiles": protac_smiles,
            "chem_mol_n_bits": n_bits,
            "chem_mol_radius": radius,
        }
        # Add RDKit descriptors and Morgan fingerprint
        features.update(fp)
        features.update(descriptors)

        # Add E3 and warhead split labels
        if e3_split_pair is not None and wh_split_pair is not None:
            features.update({
                "label_is_split": frozenset([u, v]) in true_split_edges,
                "label_e3_split": frozenset([u, v]) == frozenset(e3_split_pair),
                "label_wh_split": frozenset([u, v]) == frozenset(wh_split_pair),
            })

        # Append the features to the list of edge features
        edge_features.append(features)

    df = pd.DataFrame(edge_features)

    # Identify columns with int64 dtype
    int64_cols = df.select_dtypes(include=['int64']).columns

    # Create a dictionary mapping these columns to int32
    dtype_mapping = {col: np.int32 for col in int64_cols}

    # Apply the type conversion
    df = df.astype(dtype_mapping)
    
    return df

def get_edge_features(
    protac_smiles: str | List[str],
    wh_smiles: str | List[str],
    lk_smiles: str | List[str],
    e3_smiles: str | List[str],
    n_bits: int = 512,
    radius: int = 6,
    descriptor_names: List[str] = None,
    fp_as_string: bool = False,
    verbose: int = 0,
) -> pd.DataFrame:
    """Get edge features for a given PROTAC molecule and its components.
    
    Parameters:
        protac_smiles (str | List[str]): SMILES representation of the PROTAC molecule.
        wh_smiles (str | List[str]): SMILES representation of the warhead.
        lk_smiles (str | List[str]): SMILES representation of the linker.
        e3_smiles (str | List[str]): SMILES representation of the E3 binder.
        n_bits (int): Number of bits for Morgan fingerprints.
        radius (int): Radius for Morgan fingerprints.
        descriptor_names (List[str]): List of RDKit descriptor names to compute.
        
    Returns:
        pd.DataFrame: DataFrame containing edge features.
    """
    if isinstance(protac_smiles, str):
        protac_smiles = [protac_smiles]
    if isinstance(wh_smiles, str):
        wh_smiles = [wh_smiles]
    if isinstance(lk_smiles, str):
        lk_smiles = [lk_smiles]
    if isinstance(e3_smiles, str):
        e3_smiles = [e3_smiles]

    iterables = zip(protac_smiles, wh_smiles, lk_smiles, e3_smiles)
    iterables = tqdm(iterables, desc="Extracting edge features", total=len(protac_smiles), disable=verbose == 0)
    features_list = []
    for protac_smi, wh_smi, lk_smi, e3_smi in iterables:
        if verbose > 1:
            get_mapped_protac_img(protac_smi, wh_smi, lk_smi, e3_smi, w=1500, h=600, display_image=True, useSVG=True)

        # Convert SMILES to RDKit molecules
        protac = Chem.MolFromSmiles(protac_smi)
        wh = Chem.MolFromSmiles(wh_smi)
        lk = Chem.MolFromSmiles(lk_smi)
        e3 = Chem.MolFromSmiles(e3_smi)
        if protac is None or wh is None or lk is None or e3 is None:
            raise ValueError(f"Invalid SMILES string: {protac}, {wh}, {lk}, {e3}")

        # Get the attachment points
        wh_edge = get_atom_idx_at_attachment(protac, wh, lk)
        e3_edge = get_atom_idx_at_attachment(protac, e3, lk)

        # Extract features
        features = extract_edge_features(
            protac_smi,
            e3_split_pair=e3_edge,
            wh_split_pair=wh_edge,
            n_bits=n_bits,
            radius=radius,
            descriptor_names=descriptor_names,
            fp_as_string=fp_as_string,
        )

        if verbose > 1:
            # Randomly sample and display 5 edges
            sample_edges = features.sample(n=5, random_state=42)
            # Display the sampled edges
            for _, row in sample_edges.iterrows():
                bond = protac.GetBondWithIdx(row['chem_bond_idx'])
                u, v = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()
                safe_display(Draw.MolToImage(
                    protac,
                    size=(1500, 400),
                    highlightColor=(1, 0, 1, 0.3), # Light purple
                    highlightAtoms=[u, v], # Highlight the two atoms
                    legend=f"Graph nodes: {u}, {v} (Betweenness centrality: {row['graph_betweenness']:.3f})",
                ))
                # print(row[[c for c in features.columns if c.startswith('graph_')] + ['chem_atom_u', 'chem_atom_v', 'chem_is_in_ring']])
                print(row)

        # Append the features to the list
        features_list.append(features)

    return pd.concat(features_list, ignore_index=True)