File size: 21,750 Bytes
9dd777e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import re
from typing import Dict, Any, Optional, List, Union
from pathlib import Path
from joblib import Parallel, delayed

import numpy as np
import networkx as nx
from rdkit import Chem, DataStructs
from rdkit.Chem import rdFingerprintGenerator

from .edge_classifier import GraphEdgeClassifier
from .e3_clustering import get_representative_e3s_fp
from .utils import average_tanimoto_distance
from protac_splitter.data.curation.bond_adjustments import (
    adjust_amide_bonds_in_substructs,
    adjust_ester_bonds_in_substructs
)

def bond_capacity(bond: Chem.Bond) -> int:
    if bond.GetIsAromatic() or bond.IsInRing():
        return 1000  # very high capacity: avoid cutting aromatic bonds
    elif bond.GetBondType() == Chem.BondType.SINGLE:
        return 1     # low capacity: prefer to cut here
    elif bond.GetBondType() == Chem.BondType.DOUBLE:
        return 10    # medium penalty
    elif bond.GetBondType() == Chem.BondType.TRIPLE:
        return 20    # stronger penalty
    else:
        return 50    # fallback for unknown/rare types

def smiles_to_nx(smiles: str) -> nx.Graph:
    mol = Chem.MolFromSmiles(smiles)
    G = nx.Graph()
    for bond in mol.GetBonds():
        capacity = bond_capacity(bond)
        G.add_edge(bond.GetBeginAtomIdx(), bond.GetEndAtomIdx(), capacity=capacity)
    return G

def extract_attachment_point(smiles):
    """
    Extracts the number X from the pattern [X*] in a SMILES string.

    Parameters:
        smiles (str): The SMILES string containing the attachment point.

    Returns:
        str or None: The extracted number as a string, or None if not found.
    """
    match = re.search(r'\[(\d+)\*\]', smiles)
    return match.group(1) if match else None

def split_protac_with_betweenness_centrality(
    protac_smiles: str,
    representative_e3s_fp: List[DataStructs.ExplicitBitVect] = None,
    morgan_fp_generator: Optional[Any] = None,
    use_capacity_weight: bool = False,
    betweenness_threshold: float = 0.4,
) -> Dict[str, str]:
    """
    Split the PROTAC molecule into two parts using the NetworkX library.
    
    Parameters:
        protac_smiles (str): The SMILES string of the PROTAC molecule.
        representative_e3s_fp (list): List of representative E3 ligands fingerprints.
        morgan_fp_generator: RDKit Morgan fingerprint generator (should be the same as the one that generated the E3 fingerprints).
        use_capacity_weight (bool): Whether to use bond capacity as weight for the graph.
        betweenness_threshold (float): Threshold for betweenness centrality to consider a node as a candidate for splitting.
        
    Returns:
        dict: A dictionary containing the E3 ligand, warhead, linker, top nodes, and max centrality score.
    """
    if morgan_fp_generator is None:
        # Create a default Morgan fingerprint generator
        morgan_fp_generator = rdFingerprintGenerator.GetMorganGenerator(
            radius=16,
            fpSize=1024,
            useBondTypes=True,
            includeChirality=True,
        )

    if representative_e3s_fp is None:
        # Get the representative E3 ligands fingerprints
        representative_e3s_fp = get_representative_e3s_fp(fp_generator=morgan_fp_generator)
    
    # -----------------------------------
    # Deterministic graph-based algorithm
    # -----------------------------------
    protac = Chem.MolFromSmiles(protac_smiles)
    if protac is None:
        raise ValueError(f"Invalid SMILES string: {protac_smiles}")

    G = smiles_to_nx(protac_smiles)

    # Compute betweenness centrality
    weight = 'capacity' if use_capacity_weight else None
    centrality = nx.betweenness_centrality(G, normalized=True, endpoints=True, weight=weight)

    # Get the two nodes with the highest betweenness centrality
    sorted_nodes = sorted(centrality.items(), key=lambda x: x[1], reverse=True)

    # Get the list of bridges in the graph
    bridges = list(nx.bridges(G))

    # Get the top two nodes
    top_nodes = [n for n, _ in sorted_nodes if n in bridges][:2]

    # Get the top nodes with the highest betweenness centrality that are not in
    # a ring, but are adjacent to the top nodes or have a high betweenness
    for node, score in sorted_nodes:
        # Check if the node is in a ring in the protac molecule
        atom = protac.GetAtomWithIdx(node)
        if not atom.IsInRing():
            # Check if the atom is adjacent to any of the top nodes, if so, add it to the list
            for neighbor in G.neighbors(node):
                if neighbor in top_nodes:
                    top_nodes.append(node)
                    break
            if score > betweenness_threshold:
                top_nodes.append(node)

    # If a node as only top nodes as neighbors, add it to the list
    for node in G.nodes():
        if node not in top_nodes:
            neighbors = list(G.neighbors(node))
            if all(neighbor in top_nodes for neighbor in neighbors):
                top_nodes.append(node)

    # Get all paths between the top nodes, e.g., rings
    for i in range(len(top_nodes)):
        for j in range(i + 1, len(top_nodes)):
            node1 = top_nodes[i]
            node2 = top_nodes[j]

            for path in nx.all_simple_paths(G, node1, node2):
                for node in path:
                    if node not in top_nodes:
                        top_nodes.append(node)

    # Remove duplicates
    top_nodes = list(set(top_nodes))
    
    # Loop over the top nodes and find the nodes that have a neighbor outside
    # the top nodes
    edge_nodes = set()
    for top_node in top_nodes:
        for neighbor in G.neighbors(top_node):
            if neighbor not in top_nodes:
                edge_nodes.update([(top_node, neighbor)])
                break
            
    # Get molecule fragment from the top nodes
    bonds = [protac.GetBondBetweenAtoms(i, j) for (i, j) in edge_nodes]
    bonds_idx = [bond.GetIdx() for bond in bonds if bond is not None]
    
    # Try any pair of indexes, if the number of resulting fragments is not 3,
    # then do not consider them as candidates for splitting
    candidate_bonds = []
    for i in range(len(bonds_idx)):
        for j in range(i + 1, len(bonds_idx)):
            bond1 = bonds_idx[i]
            bond2 = bonds_idx[j]

            # Get the fragments
            fragments = Chem.FragmentOnBonds(protac, [bond1, bond2])
                
            # Check if there are 3 fragments
            if Chem.MolToSmiles(fragments).count(".") == 2:
                frag_lens = []
                avg_len = 0
                for frag in Chem.GetMolFrags(fragments, asMols=True):
                    frag_len = frag.GetNumAtoms()
                    frag_lens.append(frag_len)
                    avg_len += frag_len
                avg_len /= 3

                # Calculate the standard deviation of the fragment lengths
                len_std = 0
                for frag_len in frag_lens:
                    len_std += (frag_len - avg_len) ** 2
                len_std = (len_std / 3) ** 0.5
                candidate_bonds.append(((bond1, bond2), len_std))

    # Sort the candidate bonds by distance to average (smallest first)
    candidate_bonds = sorted(candidate_bonds, key=lambda x: x[1])

    ligands = None
    while ligands is None and len(candidate_bonds) > 0:
        bonds_idx = candidate_bonds[0][0]
        try:
            ligands = Chem.FragmentOnBonds(protac, bonds_idx, addDummies=True, dummyLabels=[(1, 1), (2, 2)])
        except Exception as e:
            print(f"Error fragmenting the molecule: {e}")
            candidate_bonds.pop(0)

    # If no candidate bonds were found, return None
    if ligands is None:
        print(f"No candidate bonds found for splitting PROTAC: {protac_smiles}")
        return {'e3': None, 'poi': None, 'linker': None, 'top_nodes': None, 'centrality': None}

    # Get the linker
    substructures = []
    for ligand in Chem.GetMolFrags(ligands, asMols=True):
        ligand_smiles = Chem.MolToSmiles(ligand, canonical=True)
        if ligand_smiles.count("*") == 2:
            linker_smiles = ligand_smiles
        else:
            substructures.append(ligand_smiles)

    sub1_dist = average_tanimoto_distance(substructures[0], representative_e3s_fp, morgan_fp_generator)
    sub2_dist = average_tanimoto_distance(substructures[1], representative_e3s_fp, morgan_fp_generator)
    if sub1_dist < sub2_dist:
        e3_smiles = substructures[0]
        wh_smiles = substructures[1]
    else:
        e3_smiles = substructures[1]
        wh_smiles = substructures[0]

    # Get the attachment point using a regex, e.g., should return 1 if [1*] is in the SMILES
    e3_attach_point = extract_attachment_point(e3_smiles)
    e3_smiles = e3_smiles.replace(f"[{e3_attach_point}*]", "[*:2]")
    linker_smiles = linker_smiles.replace(f"[{e3_attach_point}*]", "[*:2]")

    wh_attach_point = extract_attachment_point(wh_smiles)
    wh_smiles = wh_smiles.replace(f"[{wh_attach_point}*]", "[*:1]")
    linker_smiles = linker_smiles.replace(f"[{wh_attach_point}*]", "[*:1]")
    return {'e3': e3_smiles, 'poi': wh_smiles, 'linker': linker_smiles, 'top_nodes': top_nodes, 'centrality': centrality}


def split_protac_with_edge_classifier(
        protac_smiles: str,
        pipeline: Union[str, Path],
        representative_e3s_fp: Optional[List[np.array]] = None,
        morgan_fp_generator: Optional[Any] = None,
) -> Dict[str, str]:
    """ Split the PROTAC molecule into two parts using the pretrained edge classifier.
    
    Parameters:
        protac_smiles (str): The SMILES string of the PROTAC molecule.
        pipeline (Union[str, Path]): Path to the trained GraphEdgeClassifier model.
        representative_e3s_fp (Optional[List[np.array]]): Precomputed fingerprints of representative E3 ligands.
        morgan_fp_generator (Optional[Any]): RDKit Morgan fingerprint generator (should be the same as the one that generated the E3 fingerprints).
        
    Returns:
        dict: A dictionary containing the E3 ligand, warhead, linker, and bonds_idx
    """
    if morgan_fp_generator is None:
        # Create a default Morgan fingerprint generator
        morgan_fp_generator = rdFingerprintGenerator.GetMorganGenerator(
            radius=16,
            fpSize=1024,
            useBondTypes=True,
            includeChirality=True,
        )

    if representative_e3s_fp is None:
        # Get the representative E3 ligands fingerprints
        representative_e3s_fp = get_representative_e3s_fp(fp_generator=morgan_fp_generator)
    
    protac = Chem.MolFromSmiles(protac_smiles)
    if protac is None:
        raise ValueError(f"Invalid SMILES string: {protac_smiles}")

    if isinstance(pipeline, str):
        pipeline = GraphEdgeClassifier.load(pipeline)

    # TODO: Get the top-n bonds, if splitting results in more than 3 ligands,
    # test other pairs of bonds, then repeat until we get 3 ligands exactly.
    bonds_idx = pipeline.predict_from_smiles(
        protac_smiles,
        wh_smiles=None,
        lk_smiles=None,
        e3_smiles=None,
        top_n=2,
        return_array=True,
    ).flatten().tolist()

    ligands = Chem.FragmentOnBonds(protac, bonds_idx, addDummies=True, dummyLabels=[(1, 1), (2, 2)])

    # Get the linker
    substructures = []
    for ligand in Chem.GetMolFrags(ligands, asMols=True):
        ligand_smiles = Chem.MolToSmiles(ligand, canonical=True)
        if ligand_smiles.count("*") == 2:
            linker_smiles = ligand_smiles
        else:
            substructures.append(ligand_smiles)

    if not pipeline.binary:
        e3_smiles = substructures[0]
        wh_smiles = substructures[1]
        # NOTE: The classifier was trained on the following labels assignment:
        e3_attach_point = 1
        wh_attach_point = 2
    else:
        if representative_e3s_fp is None or morgan_fp_generator is None:
            raise ValueError("For pipeline trained on binary classification, representative_e3s_fp and morgan_fp_generator must be provided.")
        sub1_dist = average_tanimoto_distance(substructures[0], representative_e3s_fp, morgan_fp_generator)
        sub2_dist = average_tanimoto_distance(substructures[1], representative_e3s_fp, morgan_fp_generator)
        if sub1_dist < sub2_dist:
            e3_smiles = substructures[0]
            wh_smiles = substructures[1]
        else:
            e3_smiles = substructures[1]
            wh_smiles = substructures[0]
        # Get the attachment point using a regex, e.g., should return 1 if [1*] is in the SMILES
        e3_attach_point = extract_attachment_point(e3_smiles)
        wh_attach_point = extract_attachment_point(wh_smiles)

    e3_smiles = e3_smiles.replace(f"[{e3_attach_point}*]", "[*:2]")
    linker_smiles = linker_smiles.replace(f"[{e3_attach_point}*]", "[*:2]")

    wh_smiles = wh_smiles.replace(f"[{wh_attach_point}*]", "[*:1]")
    linker_smiles = linker_smiles.replace(f"[{wh_attach_point}*]", "[*:1]")
    return {'e3': e3_smiles, 'poi': wh_smiles, 'linker': linker_smiles, "bonds_idx": bonds_idx}

def split_protac_graph_based(
    protac_smiles: str,
    use_classifier: bool = False,
    classifier: Optional['GraphEdgeClassifier'] = None,
    representative_e3s_fp: Optional[List[Any]] = None,
    morgan_fp_generator: Optional[Any] = None,
    use_capacity_weight: bool = False,
    betweenness_threshold: float = 0.4,
) -> Dict[str, str]:
    """
    Splits a PROTAC molecule using either ML classifier or deterministic betweenness centrality.
    Returns a dictionary with e3, poi, linker, bonds_idx.
    """

    if representative_e3s_fp is None:
        if morgan_fp_generator is None:
            # Create a default Morgan fingerprint generator
            morgan_fp_generator = rdFingerprintGenerator.GetMorganGenerator(
                radius=16,
                fpSize=1024,
                useBondTypes=True,
                includeChirality=True,
            )
        # Get the representative E3 ligands fingerprints
        representative_e3s_fp = get_representative_e3s_fp(fp_generator=morgan_fp_generator)

    if use_classifier:
        ret = split_protac_with_edge_classifier(
            protac_smiles=protac_smiles,
            pipeline=classifier,
            representative_e3s_fp=representative_e3s_fp,
            morgan_fp_generator=morgan_fp_generator,
        )
    else:
        ret = split_protac_with_betweenness_centrality(
            protac_smiles=protac_smiles,
            representative_e3s_fp=representative_e3s_fp,
            morgan_fp_generator=morgan_fp_generator,
            use_capacity_weight=use_capacity_weight,
            betweenness_threshold=betweenness_threshold,
        )

    substructs = {
        "e3": ret["e3"],
        "poi": ret["poi"],
        "linker": ret["linker"],
    }

    # If all of the substructures are not None, fix the amide and ester bonds
    if all(x is not None for x in substructs.values()):
        substructs = adjust_amide_bonds_in_substructs(substructs, protac_smiles)
        substructs = adjust_ester_bonds_in_substructs(substructs, protac_smiles)
        ret["e3"] = substructs["e3"]
        ret["poi"] = substructs["poi"]
        ret["linker"] = substructs["linker"]

    return ret

def split_protac_with_graphs_wrapper(
    protac_smiles: List[str],
    use_classifier: bool = False,
    classifier: Optional['GraphEdgeClassifier'] = None,
    representative_e3s: Optional[List[Any]] = None,
    representative_e3s_fp: Optional[List[Any]] = None,
    morgan_fp_generator: Optional[Any] = None,
    use_capacity_weight: bool = False,
    betweenness_threshold: float = 0.4,
) -> List[Dict[str, str]]:
    """ Wrapper function to apply split_protac_graph_based over a list of PROTAC SMILES.
    
    Parameters:
        protac_smiles (List[str]): List of SMILES strings of PROTAC molecules.
        use_classifier (bool): Whether to use a classifier for splitting.
        classifier (Optional[GraphEdgeClassifier]): Classifier to use if use_classifier is True.
        representative_e3s_fp (Optional[List[Any]]): Precomputed fingerprints of representative E3 ligands.
        morgan_fp_generator (Optional[Any]): RDKit Morgan fingerprint generator.
        use_capacity_weight (bool): Whether to use bond capacity as weight for the graph.
        betweenness_threshold (float): Threshold for betweenness centrality to consider a node as a candidate for splitting.
        
    Returns:
        List[Dict[str, str]]: List of dictionaries containing the split results for each PROTAC molecule.
    """
    if morgan_fp_generator is None and (representative_e3s is None or representative_e3s_fp is None):
        # Create a default Morgan fingerprint generator
        morgan_fp_generator = rdFingerprintGenerator.GetMorganGenerator(
            radius=16,
            fpSize=1024,
            useBondTypes=True,
            includeChirality=True,
        )

    if representative_e3s is None and representative_e3s_fp is None:
        # Get the representative E3 ligands fingerprints
        representative_e3s_fp = get_representative_e3s_fp(fp_generator=morgan_fp_generator)
    elif representative_e3s is not None and representative_e3s_fp is None:
        # Convert representative E3 ligands to fingerprints
        representative_e3s_fp = get_representative_e3s_fp(e3_list=representative_e3s, fp_generator=morgan_fp_generator)

    # Load the classifier if it is a string or Path
    if use_classifier and classifier is not None and isinstance(classifier, (str, Path)):
        classifier = GraphEdgeClassifier.load(classifier)

    return [
        split_protac_graph_based(
            protac_smiles=smi,
            use_classifier=use_classifier,
            classifier=classifier,
            representative_e3s_fp=representative_e3s_fp,
            morgan_fp_generator=morgan_fp_generator,
            use_capacity_weight=use_capacity_weight,
            betweenness_threshold=betweenness_threshold,
        ) for smi in protac_smiles
    ]


def split_protac_with_graphs_parallel(
    protac_smiles: List[str],
    use_classifier: bool = False,
    classifier: Optional['GraphEdgeClassifier'] = None,
    representative_e3s: Optional[List[Any]] = None,
    representative_e3s_fp: Optional[List[Any]] = None,
    morgan_fp_generator: Optional[Any] = None,
    use_capacity_weight: bool = False,
    betweenness_threshold: float = 0.4,
    n_jobs: int = 1,
    batch_size: int = 1,
) -> List[Dict[str, str]]:
    """ Splits a list of PROTAC molecules using either ML classifier or deterministic betweenness centrality.
    
    Parameters:
        protac_smiles (List[str]): List of SMILES strings of PROTAC molecules.
        use_classifier (bool): Whether to use a classifier for splitting.
        classifier (Optional[GraphEdgeClassifier]): Classifier to use if use_classifier is True.
        representative_e3s (Optional[List[Any]]): List of representative E3 ligands. If None, uses precomputed fingerprints.
        representative_e3s_fp (Optional[List[Any]]): Precomputed fingerprints of representative E3 ligands.
        morgan_fp_generator (Optional[Any]): RDKit Morgan fingerprint generator.
        use_capacity_weight (bool): Whether to use bond capacity as weight for the graph.
        betweenness_threshold (float): Threshold for betweenness centrality to consider a node as a candidate for splitting.
        n_jobs (int): Number of parallel jobs to run. If 1, runs sequentially.
        batch_size (int): Size of each batch for parallel processing.
    """
    # Load the classifier if it is a string or Path
    if use_classifier and classifier is not None and isinstance(classifier, (str, Path)):
        classifier = GraphEdgeClassifier.load(classifier)

    if n_jobs < 1:
        raise ValueError("n_jobs must be a positive integer.")
    if n_jobs == 1:
        # If n_jobs is 1, run the function sequentially
        return split_protac_with_graphs_wrapper(
            protac_smiles=protac_smiles,
            use_classifier=use_classifier,
            classifier=classifier,
            representative_e3s=representative_e3s,
            representative_e3s_fp=representative_e3s_fp,
            morgan_fp_generator=morgan_fp_generator,
            use_capacity_weight=use_capacity_weight,
            betweenness_threshold=betweenness_threshold,
        )

    # Raise a warning if the n_jobs > 1 and the fingerprint generator is provided
    if morgan_fp_generator is not None:
        print("Warning: Using a custom Morgan fingerprint generator with n_jobs > 1 may be un-pickleable.")

    # Split the SMILES list into batches
    smiles_batches = [protac_smiles[i:i + batch_size] for i in range(0, len(protac_smiles), batch_size)]

    # Ensure all SMILES are processed, even if the last batch is smaller than batch_size
    smiles_batches = [protac_smiles[i:i + batch_size] for i in range(0, len(protac_smiles), batch_size)]
    # Remove any empty batches (shouldn't happen, but for safety)
    smiles_batches = [batch for batch in smiles_batches if batch]

    # Run each batch in parallel
    results = Parallel(n_jobs=n_jobs)(
        delayed(split_protac_with_graphs_wrapper)(
            protac_smiles=batch,
            use_classifier=use_classifier,
            classifier=classifier,
            representative_e3s=representative_e3s,
            representative_e3s_fp=representative_e3s_fp,
            morgan_fp_generator=morgan_fp_generator,
            use_capacity_weight=use_capacity_weight,
            betweenness_threshold=betweenness_threshold,
        ) for batch in smiles_batches
    )

    # Flatten the list of lists into a single list
    return [item for batch_result in results for item in batch_result]