Spaces:
Sleeping
Sleeping
File size: 12,184 Bytes
9dd777e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import os
import random
import logging
from typing import Optional, Union
import torch
from datasets import load_dataset, concatenate_datasets, Dataset
from transformers import AutoTokenizer
from rdkit import Chem
from protac_splitter.evaluation import split_prediction
def randomize_smiles_dataset(
batch: dict,
repeat: int = 1,
prob: float = 0.5,
apply_to_text: bool = True,
apply_to_labels: bool = False,
) -> dict:
""" Randomize SMILES in a batch of data.
Args:
batch (dict): Batch of data with "text" and "labels" keys.
repeat (int, optional): Number of times to repeat the randomization. Defaults to 1.
prob (float, optional): Probability of randomizing SMILES. Defaults to 0.5.
apply_to_text (bool, optional): Whether to apply randomization to text. Defaults to True.
apply_to_labels (bool, optional): Whether to apply randomization to labels. Defaults to False.
Returns:
dict: Randomized batch of data.
"""
new_texts, new_labels = [], []
for text, label in zip(batch["text"], batch["labels"]):
try:
mol_text = Chem.MolFromSmiles(text)
mol_label = Chem.MolFromSmiles(label)
except Exception:
logging.error("Failed to convert SMILES to Mol!")
new_texts.append(text)
new_labels.append(label)
continue
if random.random() < prob:
if apply_to_text:
rand_texts = [Chem.MolToSmiles(mol_text, canonical=False, doRandom=True) for _ in range(repeat)]
else:
rand_texts = [text] * repeat
if apply_to_labels:
rand_labels = [Chem.MolToSmiles(mol_label, canonical=False, doRandom=True) for _ in range(repeat)]
else:
rand_labels = [label] * repeat
new_texts.extend(rand_texts)
new_labels.extend(rand_labels)
else:
new_texts.append(text)
new_labels.append(label)
return {"text": new_texts, "labels": new_labels}
def process_data_to_model_inputs(
batch,
tokenizer: Union[AutoTokenizer, str] = "seyonec/ChemBERTa-zinc-base-v1",
encoder_max_length: int = 512,
decoder_max_length: int = 512,
):
if isinstance(tokenizer, str):
tokenizer = AutoTokenizer.from_pretrained(tokenizer)
# tokenize the inputs and labels
inputs = tokenizer(batch["text"], truncation=True, max_length=encoder_max_length)
outputs = tokenizer(batch["labels"], truncation=True, max_length=decoder_max_length)
batch["input_ids"] = inputs.input_ids
batch["attention_mask"] = inputs.attention_mask
batch["labels"] = outputs.input_ids.copy()
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# batch["input_ids"] = batch["input_ids"].to(device)
# batch["attention_mask"] = batch["attention_mask"].to(device)
# batch["labels"] = batch["labels"].to(device)
# Because BERT automatically shifts the labels, the labels correspond exactly to `decoder_input_ids`.
# We have to make sure that the PAD token is ignored when calculating the loss.
# NOTE: Check the `ignore_index` argument in nn.CrossEntropyLoss.
# NOTE: The following is already done in the DataCollatorForSeq2Seq
# batch["labels"] = [[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]]
return batch
def get_fragments_in_labels(labels: str, linkers_only_as_labels: bool = True) -> list[str]:
""" Get the fragments in the labels.
Args:
labels (str): The labels.
linkers_only_as_labels (bool, optional): Whether to get only the linkers in the labels. Defaults to True.
Returns:
list[str]: The fragments in the labels.
"""
ligands = split_prediction(labels)
if linkers_only_as_labels:
return ligands.get("linker", None)
if None in ligands.values():
return None
return f"{ligands['e3']}.{ligands['poi']}"
def load_tokenized_dataset(
dataset_dir: str,
dataset_config: str = 'default',
tokenizer: Union[AutoTokenizer, str] = "seyonec/ChemBERTa-zinc-base-v1",
batch_size: int = 512,
encoder_max_length: int = 512,
decoder_max_length: int = 512,
token: Optional[str] = None,
num_proc_map: int = 1,
randomize_smiles: bool = False,
randomize_smiles_prob: float = 0.5,
randomize_smiles_repeat: int = 1,
randomize_text: bool = True,
randomize_labels: bool = False,
cache_dir: Optional[str] = None,
all_fragments_as_labels: bool = True,
linkers_only_as_labels: bool = False,
causal_language_modeling: bool = False,
train_size_ratio: float = 1.0,
) -> Dataset:
""" Load dataset and tokenize it.
Args:
dataset_dir (str): The directory of the dataset or the name of the data on the Hugging Face Hub.
dataset_config (str, optional): The configuration of the dataset. Defaults to 'default'.
tokenizer (AutoTokenizer | str, optional): The tokenizer to use for tokenization. If a string, the tokenizer will be loaded using `AutoTokenizer.from_pretrained(tokenizer)`. Defaults to "seyonec/ChemBERTa-zinc-base-v1".
batch_size (int, optional): The batch size for tokenization. Defaults to 512.
encoder_max_length (int, optional): The maximum length of the encoder input sequence. Defaults to 512.
decoder_max_length (int, optional): The maximum length of the decoder input sequence. Defaults to 512.
token (Optional[str], optional): The Hugging Face API token. Defaults to None.
num_proc_map (int, optional): The number of processes to use for mapping. Defaults to 1.
randomize_smiles (bool, optional): Whether to randomize SMILES. Defaults to False.
randomize_smiles_prob (float, optional): The probability of randomizing SMILES. Defaults to 0.5.
randomize_smiles_repeat (int, optional): The number of times to repeat the randomization. Defaults to 1.
randomize_text (bool, optional): Whether to randomize text. Defaults to True.
randomize_labels (bool, optional): Whether to randomize labels. Defaults to False.
cache_dir (Optional[str], optional): The directory to cache the dataset. Defaults to None.
all_fragments_as_labels (bool, optional): Whether to get all fragments in the labels. Defaults to True.
linkers_only_as_labels (bool, optional): Whether to get only the linkers in the labels. Defaults to False.
causal_language_modeling (bool, optional): Whether to use causal language modeling. Defaults to False.
train_size_ratio (float, optional): The ratio of the training dataset to use. Defaults to 1.0.
Returns:
Dataset: The tokenized dataset.
"""
if isinstance(tokenizer, str):
tokenizer = AutoTokenizer.from_pretrained(tokenizer)
if os.path.exists(dataset_dir):
# NOTE: We need a different argument to load a dataset from disk:
dataset = load_dataset(
dataset_dir,
data_dir=dataset_config,
)
print(f"Dataset loaded from disk at: \"{dataset_dir}\". Length: {dataset.num_rows}")
else:
dataset = load_dataset(
dataset_dir,
dataset_config,
token=token,
cache_dir=cache_dir,
)
print(f"Dataset loaded from hub. Length: {dataset.num_rows}")
if train_size_ratio < 1.0 and train_size_ratio > 0:
# Reduce the size of the training dataset but just selecting a fraction of the samples
dataset["train"] = dataset["train"].select(range(int(train_size_ratio * dataset["train"].num_rows)))
print(f"Reduced training dataset size to {train_size_ratio}. Length: {dataset.num_rows}")
elif train_size_ratio > 1.0 or train_size_ratio < 0:
raise ValueError("train_size_ratio must be between 0 and 1.")
if not all_fragments_as_labels:
dataset = dataset.map(
lambda x: {
"text": x["text"],
"labels": get_fragments_in_labels(x["labels"], linkers_only_as_labels),
},
batched=False,
num_proc=num_proc_map,
load_from_cache_file=True,
desc="Getting fragments in labels",
)
# Filter out the samples with None labels
dataset = dataset.filter(lambda x: x["labels"] is not None)
if linkers_only_as_labels:
print(f"Set labels to linkers only. Length: {dataset.num_rows}")
else:
print(f"Set labels to E3 and WH only. Length: {dataset.num_rows}")
if randomize_smiles:
dataset["train"] = dataset["train"].map(
randomize_smiles_dataset,
batched=True,
batch_size=batch_size,
fn_kwargs={
"repeat": randomize_smiles_repeat,
"prob": randomize_smiles_prob,
"apply_to_text": randomize_text,
"apply_to_labels": randomize_labels,
},
num_proc=num_proc_map,
load_from_cache_file=True,
desc="Randomizing SMILES",
)
print(f"Randomized SMILES in dataset. Length: {dataset.num_rows}")
if causal_language_modeling:
dataset = dataset.map(
lambda x: {
"text": x["text"] + "." + x["labels"],
"labels": x["labels"],
},
batched=False,
num_proc=num_proc_map,
load_from_cache_file=True,
desc="Setting labels to text",
)
print(f"Appended labels to text. Length: {dataset.num_rows}")
# NOTE: Remove the "labels" column if causal language modeling, since the
# DataCollatorForLM will automatically set the labels to the input_ids.
dataset = dataset.map(
process_data_to_model_inputs,
batched=True,
batch_size=batch_size,
remove_columns=["text", "labels"] if causal_language_modeling else ["text"],
fn_kwargs={
"tokenizer": tokenizer,
"encoder_max_length": encoder_max_length,
"decoder_max_length": decoder_max_length,
},
num_proc=num_proc_map,
load_from_cache_file=True,
desc="Tokenizing dataset",
)
print(f"Tokenized dataset. Length: {dataset.num_rows}")
return dataset
def load_trl_dataset(
tokenizer: Union[AutoTokenizer, str] = "seyonec/ChemBERTa-zinc-base-v1",
token: Optional[str] = None,
max_length: int = 512,
dataset_name: str = "ailab-bio/PROTAC-Splitter-Dataset",
ds_config: str = "standard",
ds_unalabeled: Optional[str] = None,
) -> Dataset:
if isinstance(tokenizer, str):
tokenizer = AutoTokenizer.from_pretrained(tokenizer)
# Load training data
train_dataset = load_dataset(
dataset_name,
ds_config,
split="train",
token=token,
)
train_dataset = train_dataset.rename_column("text", "query")
train_dataset = train_dataset.remove_columns(["labels"])
if ds_unalabeled is not None:
# Load un-labelled data
unlabeled_dataset = load_dataset(
dataset_name,
ds_unalabeled,
split="train",
token=token,
)
unlabeled_dataset = unlabeled_dataset.rename_column("text", "query")
unlabeled_dataset = unlabeled_dataset.remove_columns(["labels"])
# Concatenate datasets row-wise
dataset = concatenate_datasets([train_dataset, unlabeled_dataset])
else:
dataset = train_dataset
def tokenize(sample, tokenizer, max_length=512):
input_ids = tokenizer.encode(sample["query"], padding="max_length", max_length=max_length)
return {"input_ids": input_ids, "query": sample["query"]}
return dataset.map(lambda x: tokenize(x, tokenizer, max_length), batched=False)
def data_collator_for_trl(batch):
return {
"input_ids": [torch.tensor(x["input_ids"]) for x in batch],
"query": [x["query"] for x in batch],
} |