Spaces:
Sleeping
Sleeping
File size: 35,727 Bytes
9dd777e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 |
import os
from typing import Optional, Dict, Any, Callable, Tuple, Union
from functools import partial
import subprocess
import copy
import datetime
import logging
import math
import json
import torch
import numpy as np
import huggingface_hub as hf
from transformers import (
Trainer,
TrainingArguments,
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
DataCollatorForSeq2Seq,
DataCollatorForLanguageModeling,
AutoTokenizer,
GenerationConfig,
TrainerCallback,
set_seed,
)
from accelerate.utils import write_basic_config
from accelerate import Accelerator
import optuna
from optuna.samplers import QMCSampler
from optuna.pruners import (
BasePruner,
HyperbandPruner,
ThresholdPruner,
PatientPruner,
MedianPruner,
)
from optuna.study._study_direction import StudyDirection
from .data_utils import load_tokenized_dataset
from .evaluation import decode_and_get_metrics
from .hf_utils import (
create_hf_repository,
delete_hf_repository,
repo_exists,
upload_single_file,
)
from .model_utils import get_encoder_decoder_model, get_causal_model
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # Use GPU with index 0
# logging.basicConfig(level=logging.DEBUG)
class PrintStepCallback(TrainerCallback):
def on_init_end(self, args, state, control, **kwargs):
print(f"[{datetime.datetime.now()}] Initialization complete. Training is starting.")
def on_step_begin(self, args, state, control, **kwargs):
if state.global_step % args.logging_steps == 0:
print(f"[{datetime.datetime.now()}] Global step: {state.global_step:,}")
class ScoreMetric:
def __init__(self):
self.batch_scores = []
def update(self, scores):
self.batch_scores.append(scores)
def compute(self):
all_labels = set()
for scores in self.batch_scores:
all_labels.update(scores.keys())
aggregate_scores = {}
for k in all_labels:
scores = [s.get(k, np.nan) for s in self.batch_scores]
print(f"{k}: {np.nanmean(scores):.4f}")
aggregate_scores[k] = np.nanmean(scores)
self.batch_scores = []
return aggregate_scores
score_metric = ScoreMetric()
hp_score_metric = ScoreMetric()
class WrappedEarlyStoppingPruner(BasePruner):
"""
Pruner that wraps another pruner and checks if the trial should be pruned.
It first evaluates the wrapped pruner and, if the wrapped pruner suggests
pruning, prune. Otherwise, evaluates based on a patience threshold with a
tolerance (min_delta) and eventually prunes.
Args:
wrapped_pruner:
Wrapped pruner to check first. Pruning is only applied if this pruner recommends it.
patience:
Number of steps to wait for an improvement before pruning.
min_delta:
Minimum improvement required to reset patience.
n_warmup_steps:
Number of initial steps to skip the patience check.
"""
def __init__(
self,
wrapped_pruner: BasePruner,
patience: int,
min_delta: float = 0.0,
n_warmup_steps: int = 0,
) -> None:
if wrapped_pruner is None or not isinstance(wrapped_pruner, BasePruner):
raise ValueError(f"wrapped_pruner must be an instance of BasePruner but got {wrapped_pruner}.")
if patience < 0:
raise ValueError(f"patience cannot be negative but got {patience}.")
if min_delta < 0:
raise ValueError(f"min_delta cannot be negative but got {min_delta}.")
if n_warmup_steps < 0:
raise ValueError(f"n_warmup_steps cannot be negative but got {n_warmup_steps}.")
self._wrapped_pruner = wrapped_pruner
self._patience = patience
self._min_delta = min_delta
self._n_warmup_steps = n_warmup_steps
def prune(self, study: "optuna.study.Study", trial: "optuna.trial.FrozenTrial") -> bool:
step = trial.last_step
if step is None:
return False
intermediate_values = trial.intermediate_values
steps = np.asarray(list(intermediate_values.keys()))
# If there are insufficient steps or we are still in the warmup phase, do not prune.
if steps.size <= self._patience + 1 or step < self._n_warmup_steps:
return False
# First, check the wrapped pruner. If it suggests pruning, prune.
if self._wrapped_pruner.prune(study, trial):
return True
steps.sort()
# This is the score patience steps ago
steps_before_patience = steps[: -self._patience - 1]
scores_before_patience = np.asarray(
list(intermediate_values[step] for step in steps_before_patience)
)
# And these are the scores after that
steps_after_patience = steps[-self._patience - 1 :]
scores_after_patience = np.asarray(
list(intermediate_values[step] for step in steps_after_patience)
)
direction = study.direction
if direction == StudyDirection.MINIMIZE:
should_prune = np.nanmin(scores_before_patience) + self._min_delta < np.nanmin(
scores_after_patience
)
else:
should_prune = np.nanmax(scores_before_patience) - self._min_delta > np.nanmax(
scores_after_patience
)
return should_prune
def get_lr_scheduler_kwargs(lr_scheduler_type: str) -> Dict[str, Any]:
""" Returns the default learning rate scheduler kwargs for a given type.
Reference: https://huggingface.co/docs/timm/en/reference/schedulers
Args:
lr_scheduler_type (str): The type of the learning rate scheduler.
Returns:
Dict[str, Any]: The default learning rate scheduler kwargs.
"""
if lr_scheduler_type == "cosine":
return {}
elif lr_scheduler_type == "cosine_with_restarts":
return {"num_cycles": 3}
elif lr_scheduler_type == "cosine_with_min_lr":
return {}
elif lr_scheduler_type == "polynomial":
return {"power": 1.0}
elif lr_scheduler_type == "reduce_lr_on_plateau":
return {"min_lr": 1e-6}
else:
raise ValueError(f"Unknown learning rate scheduler type: '{lr_scheduler_type}'")
def get_best_hyperparameters(
model_init: Callable,
tokenizer: AutoTokenizer,
data_collator: Union[DataCollatorForSeq2Seq, DataCollatorForLanguageModeling],
compute_metrics: Callable,
dataset_tokenized: Dict[str, Any],
training_args: Dict[str, Any],
num_optuna_trials: int,
lr_scheduler_type: Optional[str] = None,
causal_language_modeling: bool = False,
all_fragments_as_labels: bool = True,
linkers_only_as_labels: bool = False,
) -> Tuple[float, Dict[str, Any], Dict[str, Any]]:
"""Runs an Optuna hyperparameter search to find the best hyperparameters.
Args:
model_init (Callable): The model initialization function.
tokenizer (AutoTokenizer): The tokenizer.
data_collator (DataCollatorForSeq2Seq): The data collator.
compute_metrics (Callable): The compute metrics function.
dataset_tokenized (Dict[str, Any]): The tokenized dataset.
training_args (Dict[str, Any]): The training arguments.
num_optuna_trials (int): The number of Optuna trials.
Returns:
Tuple[float, Dict[str, Any], Dict[str, Any]]: The best objective, the best hyperparameters, and the best training arguments.
"""
def optuna_hp_space(trial):
# NOTE: Tuning generation config is not implemented yet, please refer to this issue: https://github.com/huggingface/transformers/issues/33755
# Suggest hparams "shared" across all scheduler types
# learning_rate = trial.suggest_float("learning_rate", 1e-6, 1e-3, log=True)
# warmup_ratio = trial.suggest_float("warmup_ratio", 0.01, 0.1, step=0.01)
# Restrict learning rate closer to best-performing values
learning_rate = trial.suggest_float("learning_rate", 5e-6, 2e-4, log=True) # Previously 1e-6 to 1e-3
# Slightly adjust warmup ratio to avoid extreme values
warmup_ratio = trial.suggest_float("warmup_ratio", 0.02, 0.06, step=0.01) # Previously 0.01 to 0.1
# NOTE: We might want to use QMCSampler instead of TPESampler, which
# doesn't support categorical parameters. Categories can be encoded as
# integers and then decoded back to the original categories.
# NOTE: According to the GitHub code, the number of training and warmup
# steps for the scheduler types are automatically set, we don't need to
# pass them in the lr_scheduler_kwargs.
if lr_scheduler_type is None:
lr_scheduler_types = ["cosine", "cosine_with_restarts", "reduce_lr_on_plateau"] # "cosine_with_min_lr", "polynomial"
suggested_lr_sched = trial.suggest_int("lr_scheduler_type", 0, len(lr_scheduler_types) - 1)
suggested_lr_sched = lr_scheduler_types[suggested_lr_sched]
lr_scheduler_kwargs = get_lr_scheduler_kwargs(lr_scheduler_type)
elif lr_scheduler_type == "cosine":
lr_scheduler_kwargs = {
"num_cycles": trial.suggest_float("num_cycles", 0.5, 10, step=0.5),
}
elif lr_scheduler_type == "cosine_with_restarts":
lr_scheduler_kwargs = {
"num_cycles": trial.suggest_int("num_cycles", 1, 10, step=1),
}
elif lr_scheduler_type == "reduce_lr_on_plateau":
lr_scheduler_kwargs = {
"min_lr": trial.suggest_float("min_lr", 1e-10, 1e-8, log=True), # Previously 1e-12 to 1e-9
"factor": trial.suggest_float("factor", 0.8, 0.98, step=0.01), # Previously 0.1 to 0.99
}
return {
"lr_scheduler_kwargs": lr_scheduler_kwargs,
"lr_scheduler_type": lr_scheduler_type if lr_scheduler_type is not None else suggested_lr_sched,
"learning_rate": learning_rate,
"warmup_ratio": warmup_ratio,
}
if causal_language_modeling:
def compute_objective(metrics: Dict[str, float]):
# NOTE: We want to minimize the model perplexity, which is the
# exponential of the negative log-likelihood loss. Optuna is setup
# to maximize the objective, so we return the negative perplexity.
return -math.exp(metrics["eval_loss"])
else:
if all_fragments_as_labels:
def compute_objective(metrics: Dict[str, float]):
# NOTE: Having a higher eval_reassembly score should also correspond
# to a low eval loss, so we just focus on the reassembly score.
return metrics["eval_all_ligands_equal"]
else:
if linkers_only_as_labels:
def compute_objective(metrics: Dict[str, float]):
return metrics["eval_linker_equal"]
else:
def compute_objective(metrics: Dict[str, float]):
return metrics["eval_e3_equal"] + metrics["eval_poi_equal"]
def hp_name(trial: Any) -> str:
trial_name = f"trial-number={trial.number}"
for hparam, value in trial.params.items():
# Check if the value is a float and round it to 3 decimals
if hparam == "learning_rate":
value = f"{value:.1e}"
elif isinstance(value, float):
value = f"{value:.3f}"
trial_name += f"-{hparam}={value}"
return trial_name
# Override the training steps
hp_training_args = copy.deepcopy(training_args)
hp_training_args["num_train_epochs"] = -1
hp_training_args["max_steps"] = 10_000
hp_training_args["eval_steps"] = 2500
hp_training_args["eval_delay"] = 5000 # TODO: Double check if this is needed
hp_training_args["logging_steps"] = 500
hp_training_args["save_steps"] = 5000
if not causal_language_modeling:
# Use greedy decoding for the evaluation during HP search
hp_training_args["generation_config"] = GenerationConfig(
max_length=512,
max_new_tokens=512,
do_sample=False,
num_beams=1,
)
print("Hyperparameter search training arguments:")
for k, v in hp_training_args.items():
if 'token' in k:
continue
print(f" - {k}: {v}")
if causal_language_modeling:
TrainerClass = Trainer
TrainingArgumentsClass = TrainingArguments
else:
TrainerClass = Seq2SeqTrainer
TrainingArgumentsClass = Seq2SeqTrainingArguments
# Setup a "fake" Trainer for the hyperparameter search
trainer = TrainerClass(
model_init=model_init,
tokenizer=tokenizer,
data_collator=data_collator,
args=TrainingArgumentsClass(**hp_training_args),
compute_metrics=compute_metrics,
train_dataset=dataset_tokenized["train"],
eval_dataset=dataset_tokenized["validation"],
callbacks=[PrintStepCallback],
)
# Setup the Optuna pruner and sampler
max_warmup_ratio = 0.1
pruner = WrappedEarlyStoppingPruner(
MedianPruner(
n_startup_trials=0,
interval_steps=1,
n_warmup_steps=int(max_warmup_ratio * hp_training_args["max_steps"]),
),
patience=5, # Check every 5000 training steps
min_delta=0.01,
n_warmup_steps=int(max_warmup_ratio * hp_training_args["max_steps"]),
)
sampler = QMCSampler(scramble=True, seed=42)
# NOTE: The Trainer will return a BestRun object, not the Optuna trial
best_run = trainer.hyperparameter_search(
direction="maximize",
backend="optuna",
hp_space=optuna_hp_space,
hp_name=hp_name,
n_trials=num_optuna_trials,
compute_objective=compute_objective, # Default: Will sum over all metrics but loss
sampler=sampler,
pruner=pruner,
)
# Set the best hyperparameters in the original Trainer arguments
try:
print("-" * 80)
print(f"Best trial objective: {best_run.objective:.4f}. Summary: {best_run.run_summary}")
except Exception as e:
print(e)
print("WARNING. Best trial objective could not be printed.")
return best_run, hp_training_args
def train_model(
model_id: str,
ds_name: str,
ds_config: str = 'default',
learning_rate: float = 5e-5,
max_steps: int = -1,
num_train_epochs: int = 40,
batch_size: int = 128,
batch_size_tokenizer: int = 512,
gradient_accumulation_steps: int = 4,
hub_token: Optional[str] = None,
organization: Optional[str] = None,
output_dir: str = "./models/",
tokenizer: Union[AutoTokenizer, str] = "seyonec/ChemBERTa-zinc-base-v1",
pretrained_encoder: str = "seyonec/ChemBERTa-zinc-base-v1",
pretrained_decoder: str = "seyonec/ChemBERTa-zinc-base-v1",
encoder_max_length: int = 512,
decoder_max_length: int = 512,
tie_encoder_decoder: bool = False,
delete_repo_if_exists: bool = False,
delete_local_repo_if_exists: bool = False,
training_args: Optional[Dict[str, Any]] = None,
resume_from_checkpoint: Optional[str] = None,
num_optuna_trials: int = 0,
num_proc_map: int = 1,
per_device_train_batch_size: Optional[int] = None,
per_device_eval_batch_size: Optional[int] = None,
lr_scheduler_type: Optional[str] = None,
cache_dir: Optional[str] = None,
randomize_smiles: bool = False,
randomize_smiles_prob: float = 0.0,
all_fragments_as_labels: bool = True,
linkers_only_as_labels: bool = False,
warmup_ratio: Optional[float] = None,
num_cycles: Optional[int] = None,
warmup_steps: Optional[int] = None,
causal_language_modeling: bool = False,
train_size_ratio: float = 1.0,
training_args_bin: Optional[str] = None,
):
"""Trains a model on a given dataset.
Args:
model_id (str): The name of the model to be trained.
ds_name (str): The name of the dataset to be used for training.
ds_config (str, optional): The name of the dataset configuration to be used for training. Defaults to 'default'.
learning_rate (float, optional): The learning rate. Defaults to 5e-5.
max_steps (int, optional): The maximum number of training steps. Defaults to -1.
num_train_epochs (int, optional): The number of training epochs. Defaults to 40.
batch_size (int, optional): The batch size. Defaults to 128.
batch_size_tokenizer (int, optional): The batch size for the tokenizer. Defaults to 512.
gradient_accumulation_steps (int, optional): The number of gradient accumulation steps. Defaults to 4.
hub_token (Optional[str], optional): The Hugging Face token. Defaults to None.
organization (Optional[str], optional): The Hugging Face organization. Defaults to None.
output_dir (str, optional): The output directory. Defaults to "./models/".
tokenizer (AutoTokenizer | str, optional): The tokenizer. Defaults to "seyonec/ChemBERTa-zinc-base-v1".
pretrained_encoder (str, optional): The name of the pretrained encoder. Defaults to "seyonec/ChemBERTa-zinc-base-v1".
pretrained_decoder (str, optional): The name of the pretrained decoder. Defaults to "seyonec/ChemBERTa-zinc-base-v1".
encoder_max_length (int, optional): The maximum length of the encoder. Defaults to 256.
decoder_max_length (int, optional): The maximum length of the decoder. Defaults to 256.
delete_repo_if_exists (bool, optional): Whether to delete the repository first. Defaults to False.
training_args (Optional[Seq2SeqTrainingArguments], optional): The training arguments. Defaults to None.
resume_from_checkpoint (Optional[str], optional): The checkpoint to resume training from. Defaults to None.
num_optuna_trials (int, optional): The number of Optuna trials. Defaults to 0, i.e., no Optuna hyperparameter search.
"""
set_seed(42)
# if torch.cuda.is_available():
# write_basic_config(mixed_precision='fp16')
accelerator = Accelerator()
accelerator.print(f"Accelerator state from the current environment:\n{accelerator.state}")
# Check if resume_from_checkpoint exists and it's a file
if resume_from_checkpoint is not None:
# Check if the checkpoint exists: it can be either a file or a directory
if not os.path.exists(resume_from_checkpoint):
raise ValueError(f"Checkpoint file '{resume_from_checkpoint}' does not exist.")
if hub_token is not None:
hf.login(token=hub_token)
# Setup output directory and Hugging Face repository
output_dir += f"/{model_id}"
if organization is not None:
hub_model_id = f"{organization}/{model_id}"
if delete_local_repo_if_exists and os.path.exists(output_dir):
subprocess.run(["rm", "-rf", output_dir])
if not os.path.exists(output_dir):
print(f"Local repository '{output_dir}' deleted.")
else:
print(f"Local repository '{output_dir}' could not be deleted.")
return
if delete_repo_if_exists and repo_exists(hub_model_id, token=hub_token):
delete_hf_repository(repo_id=hub_model_id, token=hub_token, missing_ok=True)
print(f"Repository '{hub_model_id}' deleted.")
repo_url = create_hf_repository(
repo_id=hub_model_id,
repo_type="model",
exist_ok=True,
private=True,
token=hub_token,
)
print(f"Repository '{hub_model_id}' created at URL: {repo_url}")
else:
hub_model_id = None
print(f"Hub model ID: {hub_model_id}")
if isinstance(tokenizer, str):
tokenizer = AutoTokenizer.from_pretrained(tokenizer)
elif tokenizer is None:
tokenizer = AutoTokenizer.from_pretrained(pretrained_encoder)
# Load the tokenized dataset
print("Loading tokenized dataset.")
dataset_tokenized = load_tokenized_dataset(
ds_name,
ds_config,
tokenizer,
batch_size_tokenizer,
encoder_max_length,
decoder_max_length,
token=hub_token,
num_proc_map=num_proc_map,
cache_dir=cache_dir,
randomize_smiles=randomize_smiles,
randomize_smiles_prob=randomize_smiles_prob,
all_fragments_as_labels=all_fragments_as_labels,
linkers_only_as_labels=linkers_only_as_labels,
causal_language_modeling=causal_language_modeling,
train_size_ratio=train_size_ratio,
)
print("Dataset loaded.")
if causal_language_modeling:
# Setup the model for `model_init` in the Trainer
model_lambda = lambda: get_causal_model(
pretrained_model=pretrained_decoder,
)
# Setup the data collator, which will efficiently pad the inputs and targets
data_collator = DataCollatorForLanguageModeling(
tokenizer,
mlm=False,
pad_to_multiple_of=8, # Default: None, Original: 8
)
else:
# Precompute a "length" column for the dataset using the map function
def add_length(x):
x["length"] = len(x["input_ids"])
return x
dataset_tokenized = dataset_tokenized.map(
add_length,
num_proc=num_proc_map,
)
# Setup the model for `model_init` in the Trainer
model_lambda = lambda: get_encoder_decoder_model(
pretrained_encoder=pretrained_encoder,
pretrained_decoder=pretrained_decoder,
max_length=encoder_max_length,
tie_encoder_decoder=tie_encoder_decoder,
)
# Setup the data collator, which will efficiently pad the inputs and targets
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model_lambda(),
pad_to_multiple_of=32, # Default: None, Original: 8
)
# Setup the training arguments
if per_device_train_batch_size is None:
per_device_train_batch_size = batch_size // gradient_accumulation_steps
if per_device_eval_batch_size is None:
per_device_eval_batch_size = batch_size // gradient_accumulation_steps
if training_args is None:
training_args = {
"output_dir": output_dir,
# Optimizer-related configs
"learning_rate": learning_rate,
"optim": "adamw_torch",
"lr_scheduler_type": "cosine" if lr_scheduler_type is None else lr_scheduler_type,
"lr_scheduler_kwargs": get_lr_scheduler_kwargs(lr_scheduler_type),
# "warmup_steps": int(0.08 * 10_000), # NOTE: ChemFormer: 8000
# "warmup_ratio": warmup_ratio,
"adam_beta1": 0.9, # NOTE: ChemFormer: 0.9
"adam_beta2": 0.999, # NOTE: ChemFormer: 0.999
"adam_epsilon": 1e-8, # Default: 1e-8
# Batch size, device, and performance optimizations configs
"batch_eval_metrics": False, # Default: False
"group_by_length": True,
"per_device_train_batch_size": per_device_train_batch_size,
"per_device_eval_batch_size": per_device_eval_batch_size,
"gradient_accumulation_steps": gradient_accumulation_steps,
"auto_find_batch_size": True,
"fp16": True if torch.cuda.is_available() else False,
"fp16_full_eval" : True, # Enable full BF16 evaluation for efficiency
"half_precision_backend" : "auto", # Let Hugging Face decide the best backend. Default: "auto"
"use_cpu": False, # Default: False
"dataloader_num_workers": 8, # Default: 0 (main process only)
"dataloader_prefetch_factor": None, # Default: None
# Evaluation and checkpointing configs
"max_steps": max_steps,
"num_train_epochs": num_train_epochs,
"save_steps": 20_000, # NOTE: 200
"save_strategy": "steps",
"eval_steps": 20_000, # NOTE: 500
"eval_delay": max(int(max(max_steps, num_train_epochs) * 0.7), 0), # Default: None
"eval_strategy": "steps", # NOTE: "evaluation_strategy" is deprecated.
"save_total_limit": 2, # This will save both the best and the last trainer checkpoint
"load_best_model_at_end": True,
"metric_for_best_model": "all_ligands_equal",
"include_inputs_for_metrics": True,
"eval_on_start": False, # Default: False
# Logging configs
"log_level": "debug",
"logging_steps": 5000,
"disable_tqdm": True,
"report_to": ["tensorboard"],
"save_only_model": False, # Default: False
# Hub information configs
"push_to_hub": hub_model_id is not None, # NOTE: Also manually done further down
"push_to_hub_model_id": model_id,
"push_to_hub_organization": organization,
"hub_model_id": hub_model_id,
"hub_token": hub_token,
"hub_strategy": "checkpoint", # NOTE: Allows to resume training from last checkpoint
"hub_private_repo": True,
# Other configs
"seed": 42,
"data_seed": 42,
}
if 'num_cycles' in training_args["lr_scheduler_kwargs"] and num_cycles is not None:
training_args["lr_scheduler_kwargs"]["num_cycles"] = num_cycles
if warmup_ratio is not None:
training_args["warmup_ratio"] = warmup_ratio
if warmup_steps is not None:
training_args["warmup_steps"] = warmup_steps
# Add Generation configs
if causal_language_modeling:
training_args["metric_for_best_model"] = "eval_loss"
else:
generation_config = GenerationConfig(
max_length=512,
max_new_tokens=512,
do_sample=True,
num_beams=5,
temperature=1.0,
)
training_args["generation_config"] = generation_config
training_args["predict_with_generate"] = True
training_args["generation_config"] = generation_config
training_args["generation_max_length"] = 512
print("Training arguments:")
for k, v in training_args.items():
if 'token' in k:
continue
print(f" - {k}: {v}")
# Modify the training arguments with Optuna hyperparameter search
if num_optuna_trials > 0:
# Setup the compute_metrics function for the hyperparameter search
hp_compute_metrics = partial(
decode_and_get_metrics,
tokenizer=tokenizer,
compute_rdkit_metrics=False,
compute_graph_metrics=False,
num_proc=num_proc_map,
causal_language_modeling=causal_language_modeling,
)
# Run the HP search (and update the training_args accordingly)
best_run, hp_training_args = get_best_hyperparameters(
model_init=model_lambda,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=hp_compute_metrics,
dataset_tokenized=dataset_tokenized,
training_args=copy.deepcopy(training_args),
lr_scheduler_type=lr_scheduler_type,
num_optuna_trials=num_optuna_trials,
causal_language_modeling=causal_language_modeling,
all_fragments_as_labels=all_fragments_as_labels,
linkers_only_as_labels=linkers_only_as_labels,
)
best_objective = best_run.objective
best_trial_number = best_run.run_id
best_hparams = best_run.hyperparameters
# Save to output directory the best hyperparameters
with open(f"{output_dir}/best_hyperparameters.md", "w") as f:
f.write(f"Number of Optuna trials: {num_optuna_trials}\n\n")
f.write(f"Best trial objective: {best_objective:.4f} (best trial number: {best_trial_number})\n\n")
f.write("Best hyperparameters:\n")
for hparam, value in best_hparams.items():
f.write(f"- {hparam}: {value}\n")
f.write("\n")
f.write("Training arguments:\n")
for hparam, value in hp_training_args.items():
if "token" in hparam:
continue
elif isinstance(value, str):
if 'hf_' in value:
continue
f.write(f"- {hparam}: {value}\n")
# Open the file and remove any line that might contain the token
with open(f"{output_dir}/best_hyperparameters.md", "r") as f:
lines = f.readlines()
with open(f"{output_dir}/best_hyperparameters.md", "w") as f:
for line in lines:
if "hf_" in line:
continue
f.write(line)
print(f"Best hyperparameters saved to '{output_dir}/best_hyperparameters.md'.")
if hub_model_id is not None:
upload_single_file(
path_or_fileobj=f"{output_dir}/best_hyperparameters.md",
path_in_repo="best_hyperparameters.md",
repo_id=hub_model_id,
token=hub_token,
)
# Save the best_hparams to a JSON file
with open(f"{output_dir}/best_hyperparameters.json", "w") as f:
json.dump(best_hparams, f, indent=4)
print(f"Best hyperparameters saved to '{output_dir}/best_hyperparameters.json'.")
if hub_model_id is not None:
upload_single_file(
path_or_fileobj=f"{output_dir}/best_hyperparameters.json",
path_in_repo="best_hyperparameters.json",
repo_id=hub_model_id,
token=hub_token,
)
# Update the training arguments with the best hyperparameters
hp_specific_args = [
"num_train_epochs",
"max_steps",
"eval_steps",
"eval_delay",
"logging_steps",
"save_steps",
"generation_config",
]
for k, v in hp_training_args.items():
# Skip the specific arguments set/modifed by the HP search
if k in hp_specific_args:
continue
training_args[k] = v
# Update the num_cycles according to the original max_steps
lr_scheduler_kwargs = hp_training_args["lr_scheduler_kwargs"]
if "num_cycles" in lr_scheduler_kwargs:
hp_num_cycles = lr_scheduler_kwargs["num_cycles"]
hp_max_steps = hp_training_args["max_steps"]
# Adjust/scale the max_cycles according to the number of steps
if hp_max_steps > 0:
hp_cycle_ratio = hp_num_cycles / hp_max_steps
num_cycles = int(hp_cycle_ratio * max_steps)
training_args["lr_scheduler_kwargs"]["num_cycles"] = num_cycles
print(f"Adjusted number of cycles: {num_cycles}")
# Adjust the warmup steps according to the original max_steps
if "warmup_ratio" in hp_training_args:
hp_warmup_ratio = hp_training_args["warmup_ratio"]
hp_max_steps = hp_training_args["max_steps"]
warmup_steps = int(hp_warmup_ratio * hp_max_steps)
warmup_ratio = warmup_steps / max_steps
training_args["warmup_steps"] = warmup_steps
training_args["warmup_ratio"] = warmup_ratio
print("Training arguments updated with the best hyperparameters:")
for k, v in training_args.items():
if 'token' in k:
continue
print(f" - {k}: {v}")
print("-" * 80)
print("Starting training with the best hyperparameters.")
print("-" * 80)
# rouge = evaluate.load("rouge") # , cache_dir="/mimer/NOBACKUP/groups/naiss2023-6-290/stefano/.cache/huggingface/evaluate/")
# fpgen = Chem.rdFingerprintGenerator.GetMorganGenerator(
# radius=11,
# fpSize=1024,
# )
rouge = None
fpgen = None
compute_metrics = partial(
decode_and_get_metrics,
tokenizer=tokenizer,
rouge=rouge,
fpgen=fpgen,
compute_rdkit_metrics=False,
compute_graph_metrics=True,
num_proc=max(1, num_proc_map - 2), # NOTE: Use 2 less process for the metrics, since there will be a timeout logic
causal_language_modeling=causal_language_modeling,
)
if training_args_bin is not None:
print(f"Loading training arguments from: {training_args_bin}.")
# Load training arguments from a binary file and update model-specific arguments
args = torch.load(training_args_bin)
args.output_dir = output_dir
args.overwrite_output_dir = True if delete_local_repo_if_exists else False
args.push_to_hub_model_id = model_id
args.push_to_hub_organization = organization
args.hub_model_id = hub_model_id
args.hub_token = hub_token
# Print all the training arguments
print("Training arguments loaded:")
for k, v in args.__dict__.items():
if 'token' in k:
continue
print(f" - {k}: {v}")
else:
if causal_language_modeling:
args = TrainingArguments(**training_args)
else:
args = Seq2SeqTrainingArguments(**training_args)
if causal_language_modeling:
TrainerClass = Trainer
else:
TrainerClass = Seq2SeqTrainer
# Setup the Trainer and start training (no Optuna hyperparameter search)
trainer = TrainerClass(
model_init=model_lambda,
tokenizer=tokenizer,
data_collator=data_collator,
args=args,
compute_metrics=compute_metrics,
train_dataset=dataset_tokenized["train"],
eval_dataset=dataset_tokenized["test"],
)
if resume_from_checkpoint is not None:
trainer.train(
resume_from_checkpoint=resume_from_checkpoint,
)
else:
trainer.train()
print("-" * 80)
print("Training completed.")
print("-" * 80)
if causal_language_modeling:
tasks = ["Text Generation"]
else:
tasks = ["Text2Text Generation", "question-answering"]
tokenizer.save_pretrained(output_dir)
if hub_model_id is not None:
print("Pushing model to Hugging Face Hub.")
print("-" * 80)
trainer.push_to_hub(
commit_message="Initial version",
model_name=hub_model_id,
license="mit",
finetuned_from=f"{pretrained_encoder}",
tasks=tasks,
tags=["PROTAC", "cheminformatics"],
dataset=[ds_name],
dataset_args=[ds_config],
)
tokenizer.push_to_hub(
repo_id=hub_model_id,
commit_message="Upload tokenizer",
private=True,
token=hub_token,
tags=["PROTAC", "cheminformatics"],
)
else:
print("Pushing model to local directory.")
print("-" * 80)
trainer.save_model(output_dir)
tokenizer.save_pretrained(output_dir)
print(f"Model saved to '{output_dir}'.")
print("All done.")
|