Spaces:
Sleeping
Sleeping
File size: 12,368 Bytes
9dd777e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
""" Train a masked language model (MLM) using an encoder-decoder architecture. """
import os
from typing import Optional, Dict, Any, Union
import subprocess
import torch
import huggingface_hub as hf
from transformers import (
Trainer,
TrainingArguments,
DataCollatorForLanguageModeling,
AutoTokenizer,
)
from protac_splitter.llms.data_utils import load_tokenized_dataset
from protac_splitter.llms.hf_utils import (
create_hf_repository,
delete_hf_repository,
repo_exists,
)
from protac_splitter.llms.model_utils import get_encoder_decoder_model
def compute_metrics_for_mlm(pred) -> Dict[str, float]:
"""Compute metrics for MLM predictions, i.e., perplexity."""
logits = pred.predictions[0] if isinstance(pred.predictions, tuple) else pred.predictions
labels = pred.label_ids
# Convert to torch tensors
logits = torch.tensor(logits)
labels = torch.tensor(labels)
# Compute masked loss
loss_fct = torch.nn.CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
return {
"perplexity": torch.exp(loss).item(),
"loss": loss.item()
}
def train_mlm_model(
model_id: str,
ds_name: str,
ds_config: str = 'default',
learning_rate: float = 5e-5,
max_steps: int = -1,
num_train_epochs: int = 40,
batch_size: int = 128,
batch_size_tokenizer: int = 512,
gradient_accumulation_steps: int = 4,
hub_token: Optional[str] = None,
organization: Optional[str] = None,
output_dir: str = "./models/",
tokenizer: Union[AutoTokenizer, str] = "seyonec/ChemBERTa-zinc-base-v1",
pretrained_encoder: str = "seyonec/ChemBERTa-zinc-base-v1",
pretrained_decoder: str = "seyonec/ChemBERTa-zinc-base-v1",
encoder_max_length: int = 512,
decoder_max_length: int = 512,
tie_encoder_decoder: bool = False,
delete_repo_if_exists: bool = False,
delete_local_repo_if_exists: bool = False,
training_args: Optional[Dict[str, Any]] = None,
resume_from_checkpoint: Optional[str] = None,
num_proc_map: int = 1,
per_device_batch_size: Optional[int] = None,
lr_scheduler_type: Optional[str] = None,
mlm_probability: float = 0.15,
randomize_smiles: bool = False,
randomize_smiles_prob: float = 0.5,
randomize_smiles_repeat: int = 1,
):
"""
Trains a masked language model (MLM) using an encoder-decoder architecture.
Args:
model_id (str): The name of the model to be trained.
ds_name (str): The name of the dataset to use for training.
ds_config (str): The configuration of the dataset to use. Default: 'default'.
learning_rate (float): The learning rate for training. Default: 5e-5.
max_steps (int): The maximum number of training steps. Default: -1.
num_train_epochs (int): The number of training epochs. Default: 40.
batch_size (int): The total batch size. Default: 128.
batch_size_tokenizer (int): The batch size for the tokenizer. Default: 512.
gradient_accumulation_steps (int): The number of gradient accumulation steps. Default: 4.
hub_token (str): The Hugging Face token for authentication. Default: None.
organization (str): The organization to push the model to. Default: None.
output_dir (str): The output directory for the model. Default: "./models/".
tokenizer (AutoTokenizer | str): The tokenizer to use for training. Default: "seyonec/ChemBERTa-zinc-base-v1".
pretrained_encoder (str): The pretrained encoder model to use. Default: "seyonec/ChemBERTa-zinc-base-v1".
pretrained_decoder (str): The pretrained decoder model to use. Default: "seyonec/ChemBERTa-zinc-base-v1".
encoder_max_length (int): The maximum length of the encoder input. Default: 512.
decoder_max_length (int): The maximum length of the decoder input. Default: 512.
tie_encoder_decoder (bool): Whether to tie the encoder and decoder weights. Default: False.
delete_repo_if_exists (bool): Whether to delete the repository if it already exists. Default: False.
delete_local_repo_if_exists (bool): Whether to delete the local repository if it already exists. Default: False.
training_args (Dict[str, Any]): The training arguments for the Trainer. Default: None.
resume_from_checkpoint (str): The checkpoint to resume training from. Default: None.
num_optuna_trials (int): The number of Optuna hyperparameter search trials. Default: 0.
num_proc_map (int): The number of processes to use for mapping. Default: 1.
per_device_batch_size (int): The batch size per device. If defined, it will overwrite batch_size. Default: None.
lr_scheduler_type (str): The learning rate scheduler type. Default: None.
mlm_probability (float): The probability of masking tokens in the input. Default: 0.15.
randomize_smiles (bool): Whether to randomize SMILES strings. Default: False.
randomize_smiles_prob (float): The probability of randomizing SMILES strings. Default: 0.5.
randomize_smiles_repeat (int): The number of times to repeat randomizing SMILES strings. Default: 1.
"""
# Check if resume_from_checkpoint exists and it's a file
if resume_from_checkpoint is not None:
# Check if the checkpoint exists: it can be either a file or a directory
if not os.path.exists(resume_from_checkpoint):
raise ValueError(f"Checkpoint file '{resume_from_checkpoint}' does not exist.")
if hub_token is not None:
hf.login(token=hub_token)
# Setup output directory and Hugging Face repository
output_dir += f"/{model_id}"
if organization is not None:
hub_model_id = f"{organization}/{model_id}"
if delete_repo_if_exists and repo_exists(hub_model_id, token=hub_token):
delete_hf_repository(repo_id=hub_model_id, token=hub_token)
if not repo_exists(hub_model_id, token=hub_token):
print(f"Repository '{hub_model_id}' deleted.")
else:
print(f"Repository '{hub_model_id}' could not be deleted.")
return
if delete_local_repo_if_exists and os.path.exists(output_dir):
subprocess.run(["rm", "-rf", output_dir])
if not os.path.exists(output_dir):
print(f"Local repository '{output_dir}' deleted.")
else:
print(f"Local repository '{output_dir}' could not be deleted.")
return
repo_url = create_hf_repository(
repo_id=hub_model_id,
repo_type="model",
exist_ok=True,
private=True,
token=hub_token,
)
print(f"Repository '{hub_model_id}' created at URL: {repo_url}")
else:
hub_model_id = None
print(f"Hub model ID: {hub_model_id}")
if isinstance(tokenizer, str):
tokenizer = AutoTokenizer.from_pretrained(tokenizer)
elif tokenizer is None:
tokenizer = AutoTokenizer.from_pretrained(pretrained_encoder)
# Set the pad token to the end of the sequence, required for MLM training
tokenizer.pad_token = tokenizer.eos_token
# Load the tokenized dataset
print("Loading tokenized dataset.")
dataset_tokenized = load_tokenized_dataset(
ds_name,
ds_config,
tokenizer,
batch_size_tokenizer,
encoder_max_length,
decoder_max_length,
token=hub_token,
num_proc_map=num_proc_map,
randomize_smiles=randomize_smiles,
randomize_smiles_prob=randomize_smiles_prob,
randomize_smiles_repeat=randomize_smiles_repeat,
randomize_text=True,
randomize_labels=False,
)
# Remove "labels" column from the dataset
dataset_tokenized = dataset_tokenized.remove_columns(["labels"])
print("Dataset loaded.")
# Setup the model for `model_init` in the Trainer
bert2bert = lambda: get_encoder_decoder_model(
pretrained_encoder=pretrained_encoder,
pretrained_decoder=pretrained_decoder,
max_length=encoder_max_length,
tie_encoder_decoder=tie_encoder_decoder,
)
# Setup the data collator
data_collator = DataCollatorForLanguageModeling(
tokenizer,
mlm=True,
mlm_probability=mlm_probability,
pad_to_multiple_of=8,
)
# Setup the training arguments
if per_device_batch_size is None:
per_device_batch_size = batch_size // gradient_accumulation_steps
if training_args is None:
training_args = {
"output_dir": output_dir,
# Optimizer-related configs
"learning_rate": learning_rate,
"optim": "adamw_torch",
"lr_scheduler_type": "cosine" if lr_scheduler_type is None else lr_scheduler_type,
"warmup_steps": 8000, # NOTE: ChemFormer: 8000
# "warmup_ratio": 0,
"adam_beta1": 0.9, # NOTE: ChemFormer: 0.9
"adam_beta2": 0.999, # NOTE: ChemFormer: 0.999
"adam_epsilon": 1e-8, # Default: 1e-8
# Batch size, device, and performance optimizations configs
# "torch_compile": True,
"group_by_length": True,
"per_device_train_batch_size": per_device_batch_size,
"per_device_eval_batch_size": per_device_batch_size,
"gradient_accumulation_steps": gradient_accumulation_steps,
"auto_find_batch_size": True,
"fp16": True if torch.cuda.is_available() else False,
# Evaluation and checkpointing configs
"max_steps": max_steps,
"num_train_epochs": num_train_epochs,
"save_steps": 1000, # NOTE: 200
"save_strategy": "steps",
"eval_steps": 1000, # NOTE: 500
"evaluation_strategy": "steps",
"save_total_limit": 1,
"load_best_model_at_end": True,
"metric_for_best_model": "perplexity",
"include_inputs_for_metrics": True,
# Logging configs
"log_level": "warning",
"logging_steps": 500,
"disable_tqdm": True,
"report_to": ["tensorboard"],
"save_only_model": False, # Default: False
# Hub information configs
"push_to_hub": True, # NOTE: Also manually done further down
"push_to_hub_model_id": model_id,
"push_to_hub_organization": organization,
"hub_model_id": hub_model_id,
"hub_token": hub_token,
"hub_strategy": "checkpoint", # NOTE: Allows to resume training from last checkpoint
"hub_private_repo": True,
# Other configs
"seed": 42,
"data_seed": 42,
}
# Setup the Trainer and start training (no Optuna hyperparameter search)
trainer = Trainer(
model_init=bert2bert,
tokenizer=tokenizer,
data_collator=data_collator,
args=TrainingArguments(**training_args),
compute_metrics=compute_metrics_for_mlm,
train_dataset=dataset_tokenized["train"],
eval_dataset=dataset_tokenized["validation"],
)
if resume_from_checkpoint is not None:
trainer.train(
resume_from_checkpoint=resume_from_checkpoint,
)
else:
trainer.train()
print("-" * 80)
print("Training completed.")
print("-" * 80)
if hub_model_id is not None:
print("Pushing model to Hugging Face Hub.")
print("-" * 80)
tokenizer.save_pretrained(output_dir)
trainer.push_to_hub(
commit_message="Initial version",
model_name=hub_model_id,
license="mit",
finetuned_from=f"{pretrained_encoder}",
tasks=["Text2Text Generation", "question-answering"],
tags=["PROTAC", "cheminformatics"],
dataset=[ds_name],
dataset_args=[ds_config],
)
tokenizer.push_to_hub(
repo_id=hub_model_id,
commit_message="Upload tokenizer",
private=True,
token=hub_token,
tags=["PROTAC", "cheminformatics"],
)
print("All done.") |