Spaces:
Sleeping
Sleeping
File size: 14,331 Bytes
9dd777e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
""" Train a PPO and DPO model for PROTAC-Splitter using Hugging Face
Transformers and TRL. This is a work in progress code, so it's not tested nor
used in the package.
"""
from typing import Optional, Literal
from functools import partial
import os
import subprocess
import torch
import evaluate
import huggingface_hub as hf
from tqdm import tqdm
from datasets import load_dataset
from rdkit import Chem
from transformers import (
AutoTokenizer,
TrainingArguments,
EncoderDecoderModel,
AutoConfig,
)
from trl import (
AutoModelForSeq2SeqLMWithValueHead,
PPOConfig,
PPOTrainer,
DPOTrainer,
)
from protac_splitter.llms.data_utils import (
load_trl_dataset,
data_collator_for_trl,
)
from protac_splitter.llms.hf_utils import (
create_hf_repository,
delete_hf_repository,
repo_exists,
)
from protac_splitter.llms.evaluation import decode_and_get_metrics
from protac_splitter.evaluation import check_substructs, split_prediction
def clean_text(text: str) -> str:
""" Cleans the text by removing special tokens. """
return text.replace("<s>", "").replace("</s>", "")
def reward_function(
query: str,
response: str,
) -> float:
""" Reward function for the RL-based models.
Args:
query (str): The query SMILES string.
response (str): The response SMILES string.
Returns:
float: The reward value.
"""
substructs = split_prediction(response)
if substructs is None:
return torch.Tensor(-1.)
if not check_substructs(
protac_smiles=query,
poi_smiles=substructs['poi'],
linker_smiles=substructs['linker'],
e3_smiles=substructs['e3'],
return_bond_types=False,
poi_attachment_id=1,
e3_attachment_id=2,
):
return torch.Tensor(0.)
return torch.Tensor(1.)
def train_ppo_model(
model_id: str = "PROTAC-Splitter-PPO-standard_rand_recombined-ChemBERTa-zinc-base",
organization: str = 'ailab-bio',
output_dir: str = "./models/",
max_steps: int = 2000,
ppo_epochs: int = 5,
batch_size: int = 128,
hub_token: Optional[str] = None,
pretrained_model_name: str = "ailab-bio/PROTAC-Splitter-standard_rand_recombined-ChemBERTa-zinc-base",
max_length: int = 512,
delete_repo_if_exists: bool = False,
delete_local_repo_if_exists: bool = False,
ds_name: str = "ailab-bio/PROTAC-Splitter-Dataset",
ds_config: str = "standard",
):
""" Trains a PPO model on a given dataset.
Args:
model_id (str, optional): The name of the model to be trained. Defaults to "PROTAC-Splitter-PPO-standard_rand_recombined-ChemBERTa-zinc-base".
organization (str, optional): The organization name. Defaults to 'ailab-bio'.
output_dir (str, optional): The output directory. Defaults to "./models/".
max_steps (int, optional): The maximum number of training steps. Defaults to 2000.
ppo_epochs (int, optional): The number of PPO epochs. Defaults to 4.
batch_size (int, optional): The batch size. Defaults to 128.
hub_token (Optional[str], optional): The Hugging Face token. Defaults to None.
pretrained_model_name (str, optional): The name of the pretrained model. Defaults to "ailab-bio/PROTAC-Splitter-standard_rand_recombined-ChemBERTa-zinc-base".
max_length (int, optional): The maximum length of the input sequence. Defaults to 512.
delete_repo_first (bool, optional): Whether to delete the repository first. Defaults to False.
"""
if ppo_epochs < 1:
raise ValueError(f"ppo_epochs must be >= 1, got {ppo_epochs}.")
if hub_token is not None:
hf.login(token=hub_token)
# Setup output directory and Hugging Face repository
output_dir += f"/{model_id}"
if organization is not None:
hub_model_id = f"{organization}/{model_id}"
if delete_repo_if_exists and repo_exists(hub_model_id, token=hub_token):
delete_hf_repository(repo_id=hub_model_id, token=hub_token)
if not repo_exists(hub_model_id, token=hub_token):
print(f"Repository '{hub_model_id}' deleted.")
else:
print(f"Repository '{hub_model_id}' could not be deleted.")
return
if delete_local_repo_if_exists and os.path.exists(output_dir):
subprocess.run(["rm", "-rf", output_dir])
if not os.path.exists(output_dir):
print(f"Local repository '{output_dir}' deleted.")
else:
print(f"Local repository '{output_dir}' could not be deleted.")
return
repo_url = create_hf_repository(
repo_id=hub_model_id,
repo_type="model",
exist_ok=True,
private=True,
token=hub_token,
)
print(f"Repository '{hub_model_id}' created at URL: {repo_url}")
else:
hub_model_id = None
print(f"Hub model ID: {hub_model_id}")
# Load pretrained model
model = AutoModelForSeq2SeqLMWithValueHead.from_pretrained(
pretrained_model_name,
max_length=max_length,
)
ref_model = AutoModelForSeq2SeqLMWithValueHead.from_pretrained(
pretrained_model_name,
max_length=max_length,
)
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name)
tokenizer.pad_token = tokenizer.eos_token
# Get dataset
train_dataset = load_trl_dataset(
tokenizer=tokenizer,
token=hub_token,
max_length=max_length,
dataset_name=ds_name,
ds_config=ds_config,
).shuffle(seed=42).flatten_indices()
# Setup PPO trainer
hub_configs = {
"repo_id": hub_model_id,
"commit_message": "Initial version",
"private": True,
}
ppo_config = PPOConfig(
# Learning parameters
learning_rate=1e-5,
steps=max_steps, # Default: 20_000
ppo_epochs=ppo_epochs, # Default: 4
batch_size=batch_size, # Default: 256
gradient_accumulation_steps=1, # Default: 1
optimize_device_cache=True,
# PPO parameters
init_kl_coef=1.0,
adap_kl_ctrl=True,
target=0.5,
horizon=1000,
cliprange=0.1,
early_stopping=True,
target_kl=0.5,
max_grad_norm=1.0,
use_score_scaling=True,
use_score_norm=True,
whiten_rewards=True,
# Logging parameters
# NOTE: Check this guide for more information about the logged metrics:
# https://huggingface.co/docs/trl/v0.10.1/logging
model_name=hub_model_id,
push_to_hub_if_best_kwargs=hub_configs,
log_with="tensorboard", # ["wandb", LoggerType.TENSORBOARD],
project_kwargs={"logging_dir": output_dir},
seed=42,
)
ppo_trainer = PPOTrainer(
model=model,
ref_model=ref_model,
num_shared_layers=0,
config=ppo_config,
tokenizer=tokenizer,
dataset=train_dataset,
data_collator=data_collator_for_trl,
# lr_scheduler=torch.optim.lr_scheduler.LRScheduler, # NOTE: It must be that, CosineAnnealingLR is not supported
)
# Training Loop
generation_kwargs = {
"do_sample": True,
"num_beams": 5,
"top_k": 20,
"max_length": 512,
"pad_token_id": tokenizer.eos_token_id,
}
for epoch, batch in tqdm(enumerate(ppo_trainer.dataloader), total=len(ppo_trainer.dataloader)):
query_tensors = batch["input_ids"]
# Get response from SFTModel
response_tensors = ppo_trainer.generate(query_tensors, **generation_kwargs)
batch["response"] = [tokenizer.decode(r.squeeze()) for r in response_tensors]
# Compute reward score
rewards = [reward_function(clean_text(q), clean_text(r)) for q, r in zip(batch["query"], batch["response"])]
rewards = [torch.tensor(r) for r in rewards]
# Run PPO step
stats = ppo_trainer.step(query_tensors, response_tensors, rewards)
ppo_trainer.log_stats(stats, batch, rewards)
# Save model and tokenizer
ppo_trainer.push_to_hub(**hub_configs)
tokenizer.push_to_hub(**hub_configs)
def train_dpo_model(
model_name: str = "ailab-bio/PROTAC-Splitter-DPO",
output_dir: str = "./models/",
beta: float = 0.1,
loss_type: Literal["sigmoid", "hinge"] = "sigmoid",
learning_rate: float = 5e-5,
max_steps: int = 2000,
num_train_epochs: int = -1,
batch_size: int = 128,
gradient_accumulation_steps: int = 4,
resume_from_checkpoint: bool = False,
hub_token: Optional[str] = None,
pretrained_model_name: str = "ailab-bio/PROTAC-Splitter_untied_80-20-split",
pretrained_ref_model_name: str = "ailab-bio/PROTAC-Splitter_untied_80-20-split",
max_length: int = None,
delete_repo_first: bool = False,
optuna_search: bool = False,
):
""" Trains a DPO model on a given dataset.
Args:
model_name (str, optional): The name of the model to be trained. Defaults to "ailab-bio/PROTAC-Splitter-DPO".
max_steps (int, optional): The maximum number of training steps. Defaults to 2000.
"""
if hub_token is not None:
hf.login(token=hub_token)
if delete_repo_first and not resume_from_checkpoint:
delete_hf_repository(repo_id=model_name, token=hub_token)
tokenizer = AutoTokenizer.from_pretrained(
pretrained_model_name,
token=hub_token,
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Get train and eval datasets
dataset = load_dataset(
"ailab-bio/PROTAC-Substructures-DPO",
token=hub_token,
)
# Setup models
def model_init():
return EncoderDecoderModel.from_pretrained(
pretrained_model_name,
token=hub_token,
)
model_ref = EncoderDecoderModel.from_pretrained(
pretrained_ref_model_name,
token=hub_token,
)
# Setup training arguments
per_device_batch_size = batch_size // gradient_accumulation_steps
training_args = TrainingArguments(
output_dir=output_dir,
# Optimizer-related configs
learning_rate=learning_rate,
optim="adamw_torch",
lr_scheduler_type="cosine", # Default: "linear"
# Batch size and device configs
per_device_train_batch_size=per_device_batch_size,
per_device_eval_batch_size=per_device_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
auto_find_batch_size=True,
# torch_compile=True,
fp16=True,
# Evaluation and checkpointing configs
evaluation_strategy="steps", # TODO: Why is it not working? "steps",
max_steps=max_steps,
num_train_epochs=num_train_epochs,
eval_steps=100,
save_steps=200,
# eval_steps=7500,
# warmup_steps=2000,
save_strategy="steps",
save_total_limit=1,
load_best_model_at_end=True,
# metric_for_best_model="valid_smiles",
# Logging configs
log_level="info",
logging_steps=50,
disable_tqdm=True,
# Hub information configs
push_to_hub=True, # NOTE: Done manually further down
hub_token=hub_token,
hub_model_id=model_name,
hub_strategy="checkpoint", # NOTE: Allows to resume training from last checkpoint
hub_private_repo=True,
# Other configs
remove_unused_columns=False,
seed=42,
data_seed=42,
)
# Setup Matrics
# TODO: The metric is not working because the predictions include rewards,
# or something like that, i.e., real values, which cannot be decoded by the
# tokenizer. Skipping for now and using the default one.
rouge = evaluate.load("rouge")
fpgen = Chem.rdFingerprintGenerator.GetMorganGenerator(
radius=8,
fpSize=2048,
)
metric = partial(
decode_and_get_metrics,
rouge=rouge,
tokenizer=tokenizer,
fpgen=fpgen,
)
# Setup trainer and start training
if max_length is None:
max_length = AutoConfig.from_pretrained(
pretrained_model_name,
token=hub_token,
).max_length
# max_length = model.config.max_length
dpo_trainer = DPOTrainer(
model=model_init(),
ref_model=model_ref,
beta=beta,
loss_type=loss_type,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
tokenizer=tokenizer,
model_init=model_init if optuna_search else None,
# compute_metrics=metric,
max_length=max_length,
max_prompt_length=max_length,
max_target_length=max_length,
is_encoder_decoder=True,
padding_value=tokenizer.pad_token_id,
truncation_mode="keep_start",
args=training_args,
)
if optuna_search and False:
# TODO: This is not working because the training arguments do NOT
# include the beta parameter...
def optuna_hp_space(trial):
return {
"learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True),
"per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [16, 32, 64, 128]),
"beta": trial.suggest_float("beta", 0.1, 0.5),
}
best_trials = dpo_trainer.hyperparameter_search(
direction=["minimize"],
backend="optuna",
hp_space=optuna_hp_space,
n_trials=20,
# compute_objective=compute_objective,
)
print("-" * 80)
print(f"Best trials:\n{best_trials}")
print("-" * 80)
else:
if resume_from_checkpoint:
resume_from_checkpoint = "last-checkpoint"
else:
resume_from_checkpoint = None
dpo_trainer.train(
resume_from_checkpoint=resume_from_checkpoint,
)
dpo_trainer.push_to_hub(
commit_message="Initial version",
model_name=model_name,
license="mit",
finetuned_from=pretrained_model_name,
tasks=["Text2Text Generation"],
tags=["PROTAC", "cheminformatics"],
dataset="ailab-bio/PROTAC-Substructures-DPO",
) |