File size: 17,633 Bytes
9dd777e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d38fe9
9dd777e
 
 
 
 
 
 
 
 
7d38fe9
9dd777e
7d38fe9
9dd777e
 
 
 
 
 
7d38fe9
9dd777e
 
7d38fe9
9dd777e
 
7d38fe9
9dd777e
 
 
7d38fe9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dd777e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d38fe9
 
 
 
 
 
 
 
 
 
 
9dd777e
 
 
 
 
 
 
7ac301c
3b05f89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dd777e
7d38fe9
9dd777e
7d38fe9
 
9dd777e
 
 
 
7d38fe9
9dd777e
 
 
a1edd6a
7d38fe9
a1edd6a
7d38fe9
9dd777e
 
 
 
 
 
7d38fe9
9dd777e
7d38fe9
 
9dd777e
 
 
7d38fe9
9dd777e
 
 
 
 
 
 
a1edd6a
9dd777e
a1edd6a
9dd777e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d38fe9
9dd777e
7d38fe9
 
 
a1edd6a
7d38fe9
 
 
9dd777e
 
2842604
9dd777e
7d38fe9
9dd777e
 
 
 
 
7d38fe9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dd777e
 
 
 
 
7d38fe9
9dd777e
 
7d38fe9
9dd777e
7d38fe9
9dd777e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d38fe9
9dd777e
7d38fe9
9dd777e
 
7d38fe9
9dd777e
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
"""
PROTAC Splitter Web Application

This script provides a web interface for splitting PROTAC molecules into their
constituent parts: E3 ligase binder, linker, and protein-of-interest (POI) 
ligand (warhead).

The app uses the protac_splitter library to perform the splitting and offers
two main modes of operation:
1. Single SMILES processing
2. Batch processing via CSV file upload

Users can select which models to use:
- XGBoost model (default): Fast graph-based edge classification model
- Transformer model: More accurate but slower deep learning model
- If neither is selected, a rule-based splitting algorithm is used

Author: Stefano Ribes
Date: 2025-06
"""

import logging
import tempfile
from pathlib import Path
from typing import Union

from PIL import Image
import gradio as gr
import pandas as pd
from rdkit import Chem
from rdkit.Chem import Draw

from protac_splitter import split_protac
from protac_splitter.display_utils import get_mapped_protac_img

def save_svg_to_tempfile(svg_string: str, suffix: str = ".svg") -> Union[str, Path]:
    """
    Write an SVG string to a temporary file and return its filesystem path.
    """
    # Create a named temporary file that persists after closing
    tmp_file = tempfile.NamedTemporaryFile(mode="w", suffix=suffix, delete=False, encoding="utf-8")
    logging.debug(f"Saving SVG to temporary file: {tmp_file.name}")
    try:
        tmp_file.write(svg_string)
        tmp_file.flush()
        return Path(tmp_file.name)
    finally:
        tmp_file.close()

def process_single_smiles(protac_smiles: str, use_transformer: bool = False, use_xgboost: bool = True, beam_size: int = 5) -> tuple:
    """
    Process a single SMILES string and generate PROTAC fragment predictions
    
    Args:
        protac_smiles: The SMILES string of the PROTAC molecule
        use_transformer: Whether to use the transformer model for prediction
        use_xgboost: Whether to use the XGBoost model for prediction
        
    Returns:
        Tuple containing input image, output images, SMILES texts and status message
    """
    if not protac_smiles:
        raise gr.Error("Please provide a valid PROTAC SMILES string.", duration=5)

    try:
        results = split_protac(
            protac_smiles,
            use_transformer=use_transformer,  
            use_xgboost=use_xgboost,      
            fix_predictions=True,   # Always apply fixes to predictions
            beam_size=beam_size,    # Use beam search width for Transformer model
            verbose=1
        )
    except Exception as e:
        exception_message = str(e)
        if exception_message.startswith("Invalid PROTAC SMILES"):
            raise gr.Error("The input SMILES string is not valid (couldn't be parsed by RDKit).", duration=5)
        else:
            raise gr.Error(f"An error occurred while processing the input SMILES: {exception_message}", duration=10)

    valid_molecules = []
    pred_key = f"default_pred_n0"
    valid_molecules.append(results[pred_key])

    # Generate images and corresponding SMILES text
    images = []
    input_mol = Chem.MolFromSmiles(protac_smiles)
    
    if input_mol is not None:
        input_img = Draw.MolToImage(input_mol, legend="", size=(1000, 200))
    else:
        input_img = Image.new("RGB", (1000, 1000))
    
    smiles_texts = []
    splits = {}
    for smiles in results[pred_key].split("."):
        mol = Chem.MolFromSmiles(smiles)
        if mol:
            if "[*:1]" in smiles and "[*:2]" in smiles:
                legend = "Linker"
                splits["linker"] = smiles
            elif "[*:1]" in smiles:
                legend = "Warhead"
                splits["poi"] = smiles
            elif "[*:2]" in smiles:
                legend = "E3 Ligase Ligand"
                splits["e3"] = smiles

            img = Draw.MolToImage(mol, legend="", size=(1000, 1000))
            images.append(img)
            # smiles_texts.append(f"{legend}: {smiles}")
            smiles_texts.append(smiles)

    smiles_texts = ".".join(smiles_texts)
    smiles_df = pd.DataFrame({
        "Substructure": ["E3 Ligase Ligand", "Linker", "Warhead"],
        "SMILES": [splits.get("e3", ""), splits.get("linker", ""), splits.get("poi", "")]
    })

    # use_svg = False
    # input_img = get_mapped_protac_img(
    #     protac_smiles=protac_smiles,
    #     poi_smiles=splits.get('poi', ''),
    #     linker_smiles=splits.get('linker', ''),
    #     e3_smiles=splits.get('e3', ''),
    #     w=1000,
    #     h=500,
    #     legend=None,
    #     useSVG=use_svg,
    # )
    # 
    # if use_svg:
    #     input_img = save_svg_to_tempfile(input_img)
    #     logging.debug(f"Returning processed image path: {input_img}")

    return input_img, list(images), smiles_texts, smiles_df

def process_csv(
        file: gr.File,
        smiles_col: str,
        use_transformer: bool = False,
        use_xgboost: bool = True,
        beam_size: int = 5,
        batch_size: int = 4,
        num_proc: int = 2,
        # NOTE: `pr` is a progress tracker, it is used to track the progress but
        # it is not used in this function. Do not remove it.
        pr: gr.Progress = gr.Progress(track_tqdm=True),
) -> Path:
    """
    Process a CSV file containing PROTAC SMILES
    
    Args:
        file: Uploaded CSV file
        smiles_col: Name of the column containing SMILES strings
        use_transformer: Whether to use the transformer model for prediction
        use_xgboost: Whether to use the XGBoost model for prediction
        
    Returns:
        Path to output CSV file with predictions
    """
    df = pd.read_csv(file.name)
    if smiles_col not in df.columns:
        # Use Gradio's error message instead of raising an exception
        raise gr.Error(f"Column \"{smiles_col}\" is not in the provided CSV file.", duration=5)

    try:
        results = split_protac(
            df,
            use_transformer=use_transformer,
            use_xgboost=use_xgboost,
            protac_smiles_col=smiles_col,
            fix_predictions=True,
            batch_size=batch_size,
            num_proc=num_proc,
            beam_size=beam_size,  # Use beam search width for Transformer model
            verbose=1
        )
    except Exception as e:
        exception_message = str(e)
        if exception_message.startswith("Invalid PROTAC SMILES"):
            raise gr.Error("One or more of the input SMILES are not valid (couldn't be parsed by RDKit).", duration=5)
        else:
            raise gr.Error(f"An error occurred while processing: {exception_message}", duration=10)

    output_df = pd.DataFrame(results)
    
    # Create a temporary output file
    output_file = str(Path(tempfile.gettempdir()) / "split_preds.csv")
    logging.debug(f"Saving predictions to temporary file: {output_file}")
    output_df.to_csv(output_file, index=False)
    logging.debug(f"Output DataFrame saved to: {output_file}")

    return output_file

def create_interface():
    """
    Create and return the Gradio interface for the PROTAC Splitter app
    
    The interface includes two tabs:
    1. Single SMILES Input - For processing individual PROTAC SMILES
    2. CSV Upload - For batch processing of multiple PROTAC SMILES
    
    Returns:
        gr.Blocks: The Gradio interface
    """
    css = """
h1 {
    text-align: center;
    display:block;
}
"""
    with gr.Blocks(css=css) as demo:
        # ----------------------------------------------------------------------
        # Application title and description
        # ----------------------------------------------------------------------
        gr.Markdown("""# ✂️ PROTAC-Splitter Web Application ✂️

Upload a CSV file or enter a single SMILES string to predict PROTAC substructures.

Warheads and E3 ligase ligands connections to the linker are marked with dummy atoms, _i.e._, attachment points, as follows:

- Warhead: `[*:1]`
- E3 Ligase ligand: `[*:2]`

If you find this work useful, please consider citing it via:

```
@article{Ribes2025PROTACSplitter,
  title   = {PROTAC‐Splitter: A Machine Learning Framework for Automated Identification of PROTAC Substructures},
  author  = {Stefano Ribes and Ranxuan Zhang and Télio Cropsal and Anders Källberg and Christian Tyrchan and Eva Nittinger and Rocío Mercado},
  journal = {ChemRxiv},
  year    = {2025},
  month   = {Jul},
  day     = {08},
  doi     = {10.26434/chemrxiv-2025-bn1nv},
  url     = {https://chemrxiv.org/engage/chemrxiv/article-details/686670983ba0887c33677fc8},
  license = {CC BY 4.0}
}
```
""")
        
        # ----------------------------------------------------------------------
        # Model selection section - common to both tabs
        # ----------------------------------------------------------------------
        gr.Markdown("""## Model Selection
        
You can choose which model to use for splitting PROTAC molecules:

- **XGBoost model** (default): Fast graph-based edge classification model
- **Transformer model**: Often more accurate, but slower deep learning model
- If both are selected, the Transformer model will be used first, then if it fails, the XGBoost model will be used.
- If no model is selected, splitting will be done using graph-based heuristics, with no AI model involved.

For fast splitting, heuristic and XGBoost models are fast and efficient for most cases. On the other hand, the Transformer model runs on CPU, so it is slower, especially for processing large CSV files.

For choosing the right model to split large datasets (in the `Upload CSV` tab), we reccommend to first testing out _all_ the available models (heuristic, XGBoost, and Transformer) on a few PROTACs in the `Single SMILES Input` tab and check the quality of the splits.
""")
        with gr.Row():
            with gr.Column(scale=2):
                with gr.Row():
                    use_xgboost = gr.Checkbox(label="Use XGBoost model", value=True)
                    use_transformer = gr.Checkbox(label="Use Transformer model", value=False)
        
        # ----------------------------------------------------------------------
        # Performance configuration section
        # ----------------------------------------------------------------------
        gr.Markdown("""### Performance Configurations

Change the following parameters to optimize performance based on your machine's capabilities. Particularly useful when processing large CSV files or when using the Transformer model.
For single SMILES processing, the default values should work well in most cases.
""")
        with gr.Column(scale=1):
            # Add a num_proc input
            with gr.Row():
                num_proc = gr.Number(
                    label="Number of Processes",
                    value=2,
                    minimum=1,
                    maximum=2,
                    step=1,
                    info="Number of processes to use for parallel processing. Higher values may improve performance but require more memory. (Capped to 2 in this HF Space)"
                )

            # Add a number input for beam_size if Transformer model is selected
            with gr.Row():
                # Only show beam size input if Transformer model is selected
                beam_size = gr.Number(
                    label="Beam Search Width",
                    value=5,
                    minimum=1,
                    maximum=10,
                    step=1,
                    info="Width of the beam search for the Transformer model. Higher values may improve accuracy but increase processing time.",
                    visible=use_transformer.value  # Initially hidden, will be shown if Transformer is selected
                )
                # Add a dynamic visibility condition to show/hide beam_size based on Transformer model selection
                use_transformer.change(
                    lambda x: gr.update(visible=x),
                    inputs=[use_transformer],
                    outputs=[beam_size]
                )

            # Add a batch size input for Transformer model if selected
            with gr.Row():
                batch_size = gr.Number(
                    label="Batch Size",
                    value=4,
                    minimum=1,
                    maximum=64,
                    step=1,
                    info="Batch size for processing. Higher values may improve performance, especially on GPU machines, but require more memory.",
                    visible=use_transformer.value  # Initially hidden, will be shown if Transformer is selected
                )
                use_transformer.change(
                    lambda x: gr.update(visible=x),
                    inputs=[use_transformer],
                    outputs=[batch_size]
                )

        # ----------------------------------------------------------------------
        # Single SMILES Input tab
        # ----------------------------------------------------------------------
        gr.Markdown("""## Specify Inputs

**Disclaimer**: The input SMILES is checked for validity before processing. However, there is no check on whether the SMILES is a PROTAC-like molecule or not.
For example, attempting to split the SMILES `c1ccccc` (benzene) with the XGBoost or heuristic strategies will return an error, as ring bonds are ignored for splitting.
On the other end, `c1ccccc1CCC1CCCC1` will return a plausible split, even though it is not a PROTAC molecule.
""")
        with gr.Tab("Single SMILES Input"):
            # Input area
            # NOTE: A challenging SMILES to test the app is: CC(C)(C)S(=O)(=O)c1cc2c(Nc3ccc4scnc4c3)ccnc2cc1OCCOCCCOCCOCC(=O)Nc1cccc2c1CN(C1CCC(=O)NC1=O)C2=O
            smiles_input = gr.Textbox(
                label="Enter SMILES String",
                placeholder="E.g., CC(C)(C)S(=O)(=O)c1cc2c(Nc3ccc4scnc4c3)ccnc2cc1OCCOCCOCCOCCOCC(=O)Nc1cccc2c1CN(C1CCC(=O)NC1=O)C2=O",
            )
            submit_smiles = gr.Button("Process SMILES")

            # Output area
            smiles_input_image = gr.Image(label="Input PROTAC")
            smiles_output_images = gr.Gallery(
                label="Predicted Splits",
                columns=3,
            )
            smiles_output_df = gr.DataFrame(
                label="Substructure Predictions",
                interactive=False,
                headers=["Substructure", "SMILES"],
                show_copy_button=True,
            )
            smiles_output_texts = gr.Textbox(
                label="SMILES of the Splits",
                interactive=False,
                lines=1,
                show_copy_button=True,
            )

            # Add this Examples component
            gr.Examples(
                examples=[
                    # SMILES, use_transformer, use_xgboost, beam_size
                    ["CC(C)(C)S(=O)(=O)c1cc2c(Nc3ccc4scnc4c3)ccnc2cc1OCCOCCOCCOCCOCC(=O)Nc1cccc2c1CN(C1CCC(=O)NC1=O)C2=O", False, True, 5],
                    ["Cc1nnc2n1-c1sc(C#Cc3cnn(-c4cccc5c4C(=O)N(C4CCC(=O)NC4=O)C5=O)c3)c(Cc3ccccc3)c1COC2", False, True, 5],
                    ["c1ccccc1CCC1CCCC1", False, False, 5],
                    ["O=C(NCCOCCOCCN1CCCC1)Nc1cccc2c1CN(C1CCC(=O)NC1=O)C2=O", False, False, 5],
                ],
                inputs=[smiles_input, use_transformer, use_xgboost, beam_size],
                outputs=[smiles_input_image, smiles_output_images, smiles_output_texts, smiles_output_df],
                fn=process_single_smiles,
                cache_examples=True,
            )

            # Connect the button click event to the processing function
            submit_smiles.click(
                process_single_smiles, 
                inputs=[smiles_input, use_transformer, use_xgboost, beam_size], 
                outputs=[smiles_input_image, smiles_output_images, smiles_output_texts, smiles_output_df]
            )

        # ----------------------------------------------------------------------
        # CSV file processing tab
        # ----------------------------------------------------------------------
        with gr.Tab("Upload CSV"):
            # File upload area
            file_input = gr.File(label="Upload CSV File")
            smiles_column = gr.Textbox(
                label="Column Name for PROTAC SMILES",
                placeholder="E.g., \"PROTAC SMILES\"",
                # value="PROTAC SMILES",
            )
            submit_csv = gr.Button("Process CSV")
            
            # Output file download area
            download_output = gr.File(label="Download Predictions")
            
            # Connect the button click event to the processing function
            submit_csv.click(
                process_csv, 
                inputs=[file_input, smiles_column, use_transformer, use_xgboost, beam_size, batch_size, num_proc],
                outputs=[download_output]
            )
            
            gr.Markdown(f"""**Note:** The output CSV will contain the following columns:

- `smiles_column`: The original PROTAC SMILES string
- `default_pred_n0`: The predicted SMILES strings for the splits
- `model_name`: The model used for the prediction
""")

    return demo

# Create the Gradio interface
# NOTE: `demo` must be a global variable, so to make the Gradio’s hot-reload system work.
# NOTE: Launch the app with `gradio scripts/protac_splitter_app.py` to develop it.
demo = create_interface()

if __name__ == "__main__":
    # Set logging level to DEBUG for detailed output
    logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
    demo.launch()