""" Curation utilities for PROTAC Splitter. """ import os import re from typing import Any, Dict, Optional, Union, Callable from joblib import Parallel, delayed from rdkit import Chem from rdkit.Chem import DataStructs import pandas as pd import numpy as np from tqdm import tqdm from protac_splitter.chemoinformatics import ( canonize, remove_dummy_atoms, canonize_smiles, get_mol_id, get_substr_match, ) from protac_splitter.evaluation import check_reassembly from protac_splitter.data.curation.substructure_extraction import ( get_substructure_from_non_perfect_match, get_substructs_from_unmapped_e3_poi, get_substructs_from_substr_and_linker, get_substructs_from_mapped_linker, swap_attachment_points, ) from protac_splitter.data.curation.bond_adjustments import ( adjust_amide_bonds_in_substructs, adjust_ester_bonds_in_substructs, ) from protac_splitter.data.curation.mapping_utils import update_dictionary def check_substructs_size( protac_mol: Chem.Mol, substructs: Dict[str, str], size_perc_threshold: float = 0.8, ) -> bool: """ Check the size of the substructures in the PROTAC. If any of them is too big, return False. Args: protac_mol: The PROTAC molecule. substructs: The substructures to check against. Returns: False if any of the substructures is too big. True otherwise. """ num_protac_atoms = protac_mol.GetNumAtoms() for key, smiles in substructs.items(): substruct = Chem.MolFromSmiles(smiles) num_substruct_atoms = substruct.GetNumAtoms() if num_substruct_atoms / num_protac_atoms > size_perc_threshold: # print(f'Error: {key.upper()} is too big in the PROTAC ({num_substruct_atoms} / {num_protac_atoms} = {num_substruct_atoms / num_protac_atoms:.2%} > {size_perc_threshold:.2%})') # display_mol(substruct) # display_mol(protac_mol) return False return True def check_linker_similarity( linker_smiles: str, pois: Union[pd.DataFrame, str], e3s: Union[pd.DataFrame, str], linkers: Optional[Union[pd.DataFrame, str]] = None, pois_similarity_threshold: float = 0.7, e3s_similarity_threshold: float = 0.7, linkers_similarity_threshold: float = 0.6, morgan_fp_generator: Optional[Callable] = None, ) -> bool: """ Check the similarity of the linker with all the matching POIs and E3s. If too similar to any of them, return False. Args: linker_smiles: The linker SMILES. pois: The POI ligands. Must have a 'FP' column with the Morgan fingerprints. e3s: The E3 binders. Must have a 'FP' column with the Morgan fingerprints. pois_similarity_threshold: The similarity threshold for the POIs. e3s_similarity_threshold: The similarity threshold for the E3s. morgan_fp_generator: The Morgan fingerprint generator. Returns: False if the linker is too similar to any of the POIs or E3s. True otherwise. """ # Get the linker fingerprint if morgan_fp_generator is None: morgan_fp_generator = Chem.rdFingerprintGenerator.GetMorganGenerator( radius=2, fpSize=2048, useBondTypes=True, includeChirality=True, ) linker = Chem.MolFromSmiles(linker_smiles) linker_fp = morgan_fp_generator.GetFingerprint(linker) # Check the similarity of the linker with the POIs and E3s (use BulkTanimotoSimilarity) if isinstance(e3s, str): # Create a one-element list with the E3 fingerprint e3s_fps = [morgan_fp_generator.GetFingerprint(Chem.MolFromSmiles(e3s))] else: e3s_fps = e3s['FP'].to_list() e3s_similarities = DataStructs.BulkTanimotoSimilarity(linker_fp, e3s_fps) if (np.array(e3s_similarities) > e3s_similarity_threshold).any(): print(f'WARNING: Linker {linker_smiles} is too similar to an E3 binder') # display_mol(linker) # display_mol(Chem.MolFromSmiles(e3s[e3s_similarities.argmax()])) return False # Check if the linker is similar to any of the POIs or E3s if isinstance(pois, str): # Create a one-element list with the POI fingerprint pois_fps = [morgan_fp_generator.GetFingerprint(Chem.MolFromSmiles(pois))] else: pois_fps = pois['FP'].to_list() pois_similarities = DataStructs.BulkTanimotoSimilarity(linker_fp, pois_fps) if (np.array(pois_similarities) > pois_similarity_threshold).any(): # print(f'Error: Linker {linker_smiles} is too similar to a POI ligand') # display_mol(linker) # display_mol(Chem.MolFromSmiles(pois[pois_similarities.argmax()])) return False # Check if the linker is NOT similar to any of the linkers if linkers is not None: if isinstance(linkers, str): # Create a one-element list with the linker fingerprint linkers_fps = [morgan_fp_generator.GetFingerprint(Chem.MolFromSmiles(linkers))] else: linkers_fps = linkers['FP'].to_list() linkers_similarities = DataStructs.BulkTanimotoSimilarity(linker_fp, linkers_fps) if not (np.array(linkers_similarities) > linkers_similarity_threshold).all(): print(f'WARNING: Linker {linker_smiles} is too similar to a linker') # display_mol(linker) # display_mol(Chem.MolFromSmiles(linkers[linkers_similarities.argmax()])) return False return True def check_substructs_similarity( protac: Union[np.ndarray, str, Chem.Mol], substructs: Dict[str, str], similarity_threshold: float = 0.7, similarity_thresholds : Dict[str, float] = None, morgan_fp_generator: Optional[Callable] = None, ) -> bool: """ Check the similarity of the PROTAC with the substructures. If too similar to any of them, return False. Args: protac: The PROTAC molecule or its SMILES. substructs: The substructures to check against. similarity_threshold: The similarity threshold. similarity_thresholds: The similarity thresholds for the substructures. morgan_fp_generator: The Morgan fingerprint generator. Returns: False if the PROTAC is too similar to any of the substructures. True otherwise. """ if morgan_fp_generator is None: morgan_fp_generator = Chem.rdFingerprintGenerator.GetMorganGenerator( radius=2, fpSize=2048, useBondTypes=True, includeChirality=True, ) if isinstance(protac, str): protac = Chem.MolFromSmiles(protac) protac_fp = morgan_fp_generator.GetFingerprint(protac) elif isinstance(protac, Chem.Mol): protac_fp = morgan_fp_generator.GetFingerprint(protac) else: protac_fp = protac for key, smiles in substructs.items(): substr_fp = morgan_fp_generator.GetFingerprint(Chem.MolFromSmiles(smiles)) threshold = similarity_thresholds[key] if similarity_thresholds is not None else similarity_threshold if DataStructs.TanimotoSimilarity(protac_fp, substr_fp) > threshold: print(f'WARNING: {key.upper()} is too similar to the PROTAC, similarity: {DataStructs.TanimotoSimilarity(protac_fp, substr_fp):.4f} > {threshold}') # display_mol(Chem.MolFromSmiles(smiles)) return False return True def get_split_row( row: pd.Series, substructs: Dict[str, str], poi_smiles_no_dummy: Optional[str] = None, e3_smiles_no_dummy: Optional[str] = None, ) -> Dict[str, Any]: """ Update the fields of a row with the substructures and their IDs. Args: row: The input row. dictionaries: The dictionaries containing the substructures. substructs: The substructures found in the PROTAC. poi_smiles_no_dummy: The POI ligand SMILES without the dummy atoms. e3_smiles_no_dummy: The E3 binder SMILES without the dummy atoms. update_dict_if_ids_not_found: Whether to update the dictionary if the substructure IDs are not found. Returns: The updated row. """ mapped_row = {} mapped_row['PROTAC SMILES'] = canonize_smiles(row['SMILES']) mapped_row['POI Ligand SMILES with direction'] = substructs['poi'] mapped_row['E3 Binder SMILES with direction'] = substructs['e3'] mapped_row['Linker SMILES with direction'] = substructs['linker'] mapped_row['POI Ligand SMILES'] = remove_dummy_atoms(substructs['poi']) if poi_smiles_no_dummy is None else poi_smiles_no_dummy mapped_row['E3 Binder SMILES'] = remove_dummy_atoms(substructs['e3']) if e3_smiles_no_dummy is None else e3_smiles_no_dummy mapped_row['Linker SMILES'] = remove_dummy_atoms(substructs['linker']) # Get the IDs and update the dictionaries with new substructures mapped_row['PROTAC ID'] = get_mol_id(mapped_row['PROTAC SMILES']) mapped_row['POI Ligand ID'] = get_mol_id(mapped_row['POI Ligand SMILES with direction']) mapped_row['E3 Binder ID'] = get_mol_id(mapped_row['E3 Binder SMILES with direction']) mapped_row['Linker ID'] = get_mol_id(mapped_row['Linker SMILES with direction']) return mapped_row def split_single_protac( row: pd.Series, dictionaries: Dict[str, pd.DataFrame], biggest_matches_first: bool = True, max_iter_on_linkers: int = 0, split_with_substr_and_linker_matching: bool = False, similarity_threshold: float = 0.65, morgan_radius: Optional[int] = None, morgan_fp_size: Optional[int] = None, morgan_fp_generator: Optional[Callable] = None, poi_attachment_id: int = 1, e3_attachment_id: int = 2, ) -> Dict[str, Any]: """ Map a PROTAC row to the substructures in the dictionaries. Args: row: The input row, containing the PROTAC SMILES, ID, and molecule. dictionaries: The dictionaries containing the substructures. biggest_matches_first: Whether to sort the matches by the number of atoms in the molecule. max_iter_on_linkers: The maximum number of iterations to perform on the linkers. Returns: The mapped row. None if the mapping was not successful. """ # # Disable the RDKit warnings that pop up when RDKit fails to create molecules # # NOTE: The following is done to avoid warning messages during multiprocessing # RDLogger.DisableLog("rdApp.*") # blocker = rdBase.BlockLogs() protac_smiles = row['SMILES'] protac_mol = row['Molecule'] if morgan_fp_generator is None: morgan_radius = 2 if morgan_radius is None else morgan_radius morgan_fp_size = 2048 if morgan_fp_size is None else morgan_fp_size morgan_fp_generator = Chem.rdFingerprintGenerator.GetMorganGenerator( radius=morgan_radius, fpSize=morgan_fp_size, useBondTypes=True, includeChirality=True, ) else: morgan_radius = 'None' morgan_fp_size = 'None' protac_fp = morgan_fp_generator.GetFingerprint(protac_mol) notes = f'({max_iter_on_linkers=})({split_with_substr_and_linker_matching=})({morgan_radius=})({morgan_fp_size=})' # Get all substructure matches in the POI dictionary # poi_matches = dictionaries['POI Ligand']['Molecule'].apply(lambda x: get_substr_match(protac_mol, x, num_allowed_fragments=1)) poi_matches = dictionaries['POI Ligand']['Molecule'].apply(lambda x: protac_mol.HasSubstructMatch(x)) pois = dictionaries['POI Ligand'][poi_matches].drop_duplicates(subset=['SMILES']) # Get all substructure matches in the E3 dictionary # e3_matches = dictionaries['E3 Binder']['Molecule'].apply(lambda x: get_substr_match(protac_mol, x, num_allowed_fragments=1)) e3_matches = dictionaries['E3 Binder']['Molecule'].apply(lambda x: protac_mol.HasSubstructMatch(x)) e3s = dictionaries['E3 Binder'][e3_matches].drop_duplicates(subset=['SMILES']) # # Sort the matches by the number of atoms in the molecule # ascending = False if biggest_matches_first else True # pois = pois.sort_values(by='Molecule', key=lambda s: s.apply(lambda m: m.GetNumAtoms()), ascending=True) # e3s = e3s.sort_values(by='Molecule', key=lambda s: s.apply(lambda m: m.GetNumAtoms()), ascending=True) # Get the POI median, then re-arrenge the pois dataframe so that the median is the first element poi_median = pois['Molecule'].apply(lambda x: x.GetNumAtoms()).median() pois = pois.sort_values(by='Molecule', key=lambda s: s.apply(lambda m: m.GetNumAtoms()), ascending=True) pois = pois.iloc[np.abs(pois['Molecule'].apply(lambda x: x.GetNumAtoms()) - poi_median).argsort()] # Get the E3 median, then re-arrenge the e3s dataframe so that the median is the first element e3_median = e3s['Molecule'].apply(lambda x: x.GetNumAtoms()).median() e3s = e3s.sort_values(by='Molecule', key=lambda s: s.apply(lambda m: m.GetNumAtoms()), ascending=True) e3s = e3s.iloc[np.abs(e3s['Molecule'].apply(lambda x: x.GetNumAtoms()) - e3_median).argsort()] # If any of the substructures is not found, get the matching linkers to be # used later (do it only once). linkers = None if len(pois) == 0 or len(e3s) == 0 or split_with_substr_and_linker_matching: matches = dictionaries['Linker with direction']['Molecule'].apply(lambda x: get_substr_match(protac_mol, x, num_allowed_fragments=2)) linkers = dictionaries['Linker with direction'][matches] linkers = linkers.sort_values(by='Molecule', key=lambda s: s.apply(lambda m: m.GetNumAtoms()), ascending=False) # dummy_attachment_id = 1 # mapping_found = False # for _, linker in linkers.iterrows(): # if mapping_found: # break # for _, poi in pois.iterrows(): # if mapping_found: # break # for _, e3 in e3s.iterrows(): # if mapping_found: # break # # Get the replace side chain # e3_mapped = Chem.ReplaceSidechains(protac_mol, e3['Molecule'], useChirality=True) # e3_mapped = rename_attachment_id(e3_mapped, dummy_attachment_id, e3_attachment_id) # if e3_mapped is None: # continue # poi_mapped = Chem.ReplaceSidechains(protac_mol, poi['Molecule'], useChirality=True) # poi_mapped = rename_attachment_id(poi_mapped, dummy_attachment_id, poi_attachment_id) # if poi_mapped is None: # continue # # Join the substructures as fragments # protac_candidate = canonize('.'.join([linker['SMILES'], e3_mapped, poi_mapped])) # protac_candidate = Chem.MolFromSmiles(protac_candidate) # protac_candidate = canonize(Chem.molzip(protac_candidate)) # if check_reassembly(protac_mol, protac_candidate): # print('Found a match!') # mapping_found = True # # substructs = { # # 'linker': linker['Molecule'], # # 'e3': e3['Molecule'], # # 'poi': poi['Molecule'], # # } # # mapped_row = get_split_row(row, dictionaries, substructs, poi['SMILES'], e3['SMILES']) # # mapped_row['Notes'] = 'Obtained from matching E3, POI, and Linker found in dictionaries.' # # return mapped_row # TODO: Add a variable to get mapped ligands even if the checks failed... add a note when it happens best_substructs_candidate = None # There were matching E3s and matching POIs: try to recover the linker from # an unmapped E3 and an unmapped POI. if len(e3s) > 0 and len(pois) > 0: for _, poi in pois.iterrows(): for _, e3 in e3s.iterrows(): additional_notes = '(matching_poi=True)(matching_e3=True)(matching_linker=None)' substructs = get_substructs_from_unmapped_e3_poi(protac_smiles, protac_mol, poi['Molecule'], e3['Molecule']) # If the substructure is not found, try to get it from a non-perfect match if substructs is None: fixed_poi = get_substructure_from_non_perfect_match(protac_mol, poi['Molecule'], poi_attachment_id) fixed_e3 = get_substructure_from_non_perfect_match(protac_mol, e3['Molecule'], e3_attachment_id) fixed_poi = poi['Molecule'] if fixed_poi is None else fixed_poi fixed_e3 = e3['Molecule'] if fixed_e3 is None else fixed_e3 if fixed_poi is not None and fixed_e3 is not None: substructs = get_substructs_from_unmapped_e3_poi(protac_smiles, protac_mol, fixed_poi, fixed_e3) if Chem.MolToSmiles(fixed_e3) != e3['SMILES']: additional_notes += '(non_perfect_e3_match=True)' else: additional_notes += '(non_perfect_e3_match=False)' if Chem.MolToSmiles(fixed_poi) != poi['SMILES']: additional_notes += '(non_perfect_poi_match=True)' else: additional_notes += '(non_perfect_poi_match=False)' if substructs is not None: size_check = check_substructs_size(protac_mol, substructs, size_perc_threshold=0.7) # Check if the linker is too similar to any of the matching POIs or E3s (use the bulk Tanimoto similarity) if not check_linker_similarity(substructs['linker'], pois, e3s, morgan_fp_generator=morgan_fp_generator, e3s_similarity_threshold=similarity_threshold, pois_similarity_threshold=similarity_threshold): best_substructs_candidate = substructs continue if not size_check and not check_substructs_similarity(protac_fp, substructs, similarity_threshold=similarity_threshold, morgan_fp_generator=morgan_fp_generator): best_substructs_candidate = substructs # display_mol(protac_mol) continue # Fix the bonds close to amide and ester groups, if necessary substructs_copy = substructs.copy() substructs = adjust_amide_bonds_in_substructs(substructs, protac_smiles) # Check and report if any SMILES was changed if substructs['linker'] != substructs_copy['linker']: additional_notes += '(amide_bonds_fixed=True)' else: additional_notes += '(amide_bonds_fixed=False)' substructs_copy = substructs.copy() substructs = adjust_ester_bonds_in_substructs(substructs, protac_smiles) # Check and report if any SMILES was changed if substructs['linker'] != substructs_copy['linker']: additional_notes += '(ester_bonds_fixed=True)' else: additional_notes += '(ester_bonds_fixed=False)' # Add the mapped PROTAC to the final list mapped_row = get_split_row(row, substructs) mapped_row['Notes'] = notes + additional_notes return mapped_row # There were no matching POIs, but some E3s and linkers matched: try to # recover the E3 from an unmapped POI and a mapped Linker if len(e3s) > 0 and split_with_substr_and_linker_matching: # len(pois) == 0 and # NOTE: Only take the largest linker(s) into account if max_iter_on_linkers: selected_linkers = linkers.iloc[:max_iter_on_linkers, :] else: selected_linkers = linkers.iloc[:1, :] for _, e3 in e3s.iterrows(): # Adjust the E3 molecule if it is not a perfect match e3_mol_fixed = get_substructure_from_non_perfect_match(protac_mol, e3['Molecule'], e3_attachment_id) e3_mol = e3['Molecule'] if e3_mol_fixed is None else e3_mol_fixed e3_mol = remove_dummy_atoms(e3_mol) if Chem.MolToSmiles(e3_mol) != e3['SMILES']: non_perfect_e3_match = True else: non_perfect_e3_match = False for _, linker in selected_linkers.iterrows(): additional_notes = f'(matching_poi=False)(matching_e3=True)(matching_linker=True)({non_perfect_e3_match=})' substructs = get_substructs_from_substr_and_linker( protac_smiles=protac_smiles, protac=protac_mol, substr=e3_mol, linker=linker['Molecule'], attachment_id=e3_attachment_id, ) if substructs is not None: size_check = check_substructs_size(protac_mol, substructs, size_perc_threshold=0.7) if not check_linker_similarity(substructs['linker'], substructs['poi'], e3s, morgan_fp_generator=morgan_fp_generator, e3s_similarity_threshold=similarity_threshold, pois_similarity_threshold=similarity_threshold): best_substructs_candidate = substructs continue if not size_check and not check_substructs_similarity(protac_fp, substructs, similarity_threshold=similarity_threshold, morgan_fp_generator=morgan_fp_generator): best_substructs_candidate = substructs # display_mol(protac_mol) continue # Fix the bonds close to amide and ester groups, if necessary substructs_copy = substructs.copy() substructs = adjust_amide_bonds_in_substructs(substructs, protac_smiles) if substructs['linker'] != substructs_copy['linker']: additional_notes += '(amide_bonds_fixed=True)' else: additional_notes += '(amide_bonds_fixed=False)' substructs_copy = substructs.copy() substructs = adjust_ester_bonds_in_substructs(substructs, protac_smiles) if substructs['linker'] != substructs_copy['linker']: additional_notes += '(ester_bonds_fixed=True)' else: additional_notes += '(ester_bonds_fixed=False)' mapped_row = get_split_row(row, substructs) mapped_row['Notes'] = notes + additional_notes return mapped_row # Swap the attachment points on the linker and try again linker_swapped = swap_attachment_points(linker['SMILES']) substructs = get_substructs_from_substr_and_linker( protac_smiles=protac_smiles, protac=protac_mol, substr=e3_mol, linker=Chem.MolFromSmiles(linker_swapped), attachment_id=e3_attachment_id, ) additional_notes += '(attachment_points_swapped_in_linker=True)' if substructs is not None: size_check = check_substructs_size(protac_mol, substructs, size_perc_threshold=0.7) if not check_linker_similarity(substructs['linker'], substructs['poi'], e3s, morgan_fp_generator=morgan_fp_generator, e3s_similarity_threshold=similarity_threshold, pois_similarity_threshold=similarity_threshold): continue if not size_check and not check_substructs_similarity(protac_fp, substructs, similarity_threshold=similarity_threshold, morgan_fp_generator=morgan_fp_generator): # display_mol(protac_mol) continue # Fix the bonds close to amide and ester groups, if necessary substructs_copy = substructs.copy() substructs = adjust_amide_bonds_in_substructs(substructs, protac_smiles) if substructs['linker'] != substructs_copy['linker']: additional_notes += '(amide_bonds_fixed=True)' else: additional_notes += '(amide_bonds_fixed=False)' substructs_copy = substructs.copy() substructs = adjust_ester_bonds_in_substructs(substructs, protac_smiles) if substructs['linker'] != substructs_copy['linker']: additional_notes += '(ester_bonds_fixed=True)' mapped_row = get_split_row(row, substructs) mapped_row['Notes'] = notes + additional_notes return mapped_row # There were no matching E3s, but some POIs and linkers matched: try to # recover the POI from an unmapped E3 and a mapped Linker if len(pois) > 0 and split_with_substr_and_linker_matching: # and len(e3s) == 0 # NOTE: Only take the largest linker(s) into account if max_iter_on_linkers: selected_linkers = linkers.iloc[:max_iter_on_linkers, :] else: selected_linkers = linkers.iloc[:1, :] for _, poi in pois.iterrows(): poi_mol = get_substructure_from_non_perfect_match(protac_mol, poi['Molecule'], poi_attachment_id) poi_mol = poi['Molecule'] if poi_mol is None else poi_mol poi_mol = remove_dummy_atoms(poi_mol) if Chem.MolToSmiles(poi_mol) != poi['SMILES']: non_perfect_poi_match = True else: non_perfect_poi_match = False for _, linker in selected_linkers.iterrows(): additional_notes = f'(matching_poi=True)(matching_e3=False)(matching_linker=True)({non_perfect_poi_match=})' substructs = get_substructs_from_substr_and_linker( protac_smiles=protac_smiles, protac=protac_mol, substr=poi_mol, linker=linker['Molecule'], attachment_id=poi_attachment_id, ) if substructs is not None: size_check = check_substructs_size(protac_mol, substructs, size_perc_threshold=0.7) if not check_linker_similarity(substructs['linker'], pois, substructs['e3'], morgan_fp_generator=morgan_fp_generator, e3s_similarity_threshold=similarity_threshold, pois_similarity_threshold=similarity_threshold): best_substructs_candidate = substructs continue if not size_check and not check_substructs_similarity(protac_fp, substructs, similarity_threshold=similarity_threshold, morgan_fp_generator=morgan_fp_generator): best_substructs_candidate = substructs # display_mol(protac_mol) continue # Fix the bonds close to amide and ester groups, if necessary substructs_copy = substructs.copy() substructs = adjust_amide_bonds_in_substructs(substructs, protac_smiles) if substructs['linker'] != substructs_copy['linker']: additional_notes += '(amide_bonds_fixed=True)' substructs_copy = substructs.copy() substructs = adjust_ester_bonds_in_substructs(substructs, protac_smiles) if substructs['linker'] != substructs_copy['linker']: additional_notes += '(ester_bonds_fixed=True)' mapped_row = get_split_row(row, substructs) mapped_row['Notes'] = notes + additional_notes return mapped_row # Swap the attachment points on the linker and try again linker_swapped = swap_attachment_points(linker['SMILES']) substructs = get_substructs_from_substr_and_linker( protac_smiles=protac_smiles, protac=protac_mol, substr=poi_mol, linker=Chem.MolFromSmiles(linker_swapped), attachment_id=poi_attachment_id, ) additional_notes += '(attachment_points_swapped_in_linker=True)' if substructs is not None: size_check = check_substructs_size(protac_mol, substructs, size_perc_threshold=0.7) if not check_linker_similarity(substructs['linker'], substructs['poi'], e3s, morgan_fp_generator=morgan_fp_generator, e3s_similarity_threshold=similarity_threshold, pois_similarity_threshold=similarity_threshold): best_substructs_candidate = substructs continue if not size_check and not check_substructs_similarity(protac_fp, substructs, similarity_threshold=similarity_threshold, morgan_fp_generator=morgan_fp_generator): best_substructs_candidate = substructs # display_mol(protac_mol) continue # Fix the bonds close to amide and ester groups, if necessary substructs_copy = substructs.copy() substructs = adjust_amide_bonds_in_substructs(substructs, protac_smiles) if substructs['linker'] != substructs_copy['linker']: additional_notes += '(amide_bonds_fixed=True)' substructs_copy = substructs.copy() substructs = adjust_ester_bonds_in_substructs(substructs, protac_smiles) if substructs['linker'] != substructs_copy['linker']: additional_notes += '(ester_bonds_fixed=True)' mapped_row = get_split_row(row, substructs) mapped_row['Notes'] = notes + additional_notes return mapped_row # Get all substructure matches in the Linker with direction dictionary # NOTE: This code is repeated here for performance reasons, to avoid # calculating the matches if not needed. if linkers is None and max_iter_on_linkers: matches = dictionaries['Linker with direction']['Molecule'].apply(lambda x: get_substr_match(protac_mol, x, num_allowed_fragments=2)) linkers = dictionaries['Linker with direction'][matches] # Sort all the matches by the number of atoms in the linker, the biggest first linkers = linkers.sort_values(by='Molecule', key=lambda s: s.apply(lambda m: m.GetNumAtoms()), ascending=False) # for j, (_, linker) in enumerate(linkers.iterrows()): # additional_notes = '(matching_poi=False)(matching_e3=False)(matching_linker=True)' # if j >= max_iter_on_linkers or max_iter_on_linkers == 0: # return None for j in range(max_iter_on_linkers): additional_notes = '(matching_poi=False)(matching_e3=False)(matching_linker=True)' linker = linkers.iloc[j, :] substructs = get_substructs_from_mapped_linker(protac_smiles, linker['SMILES']) if substructs is not None: if not check_linker_similarity(substructs['linker'], substructs['poi'], substructs['e3'], morgan_fp_generator=morgan_fp_generator, e3s_similarity_threshold=similarity_threshold, pois_similarity_threshold=similarity_threshold): best_substructs_candidate = substructs continue size_check = check_substructs_size(protac_mol, substructs, size_perc_threshold=0.7) if not size_check and not check_substructs_similarity(protac_fp, substructs, similarity_threshold=similarity_threshold, morgan_fp_generator=morgan_fp_generator): best_substructs_candidate = substructs # display_mol(protac_mol) continue # Fix the bonds close to amide and ester groups, if necessary substructs_copy = substructs.copy() substructs = adjust_amide_bonds_in_substructs(substructs, protac_smiles) if substructs['linker'] != substructs_copy['linker']: additional_notes += '(amide_bonds_fixed=True)' substructs_copy = substructs.copy() substructs = adjust_ester_bonds_in_substructs(substructs, protac_smiles) if substructs['linker'] != substructs_copy['linker']: additional_notes += '(ester_bonds_fixed=True)' if not check_substructs_size(protac_mol, substructs, size_perc_threshold=0.95): best_substructs_candidate = substructs continue mapped_row = get_split_row(row, substructs) mapped_row['Notes'] = notes + additional_notes return mapped_row # If we are here, it means that the substructures found in the above loops # failed the similarity checks. We add a note and return the best # substructure candidate found. if best_substructs_candidate is not None: substructs_copy = substructs.copy() substructs = adjust_amide_bonds_in_substructs(best_substructs_candidate, protac_smiles) if substructs['linker'] != best_substructs_candidate['linker']: notes += '(amide_bonds_fixed=True)' substructs_copy = substructs.copy() substructs = adjust_ester_bonds_in_substructs(substructs, protac_smiles) if substructs['linker'] != substructs_copy['linker']: notes += '(ester_bonds_fixed=True)' mapped_row = get_split_row(row, substructs) mapped_row['Notes'] = notes + '(similarity_checks_failed=True)' return mapped_row return None def split_protacs( protac_df: pd.DataFrame, dictionaries: Dict[str, pd.DataFrame], max_iter_on_linkers: int = 0, split_with_substr_and_linker_matching: bool = False, biggest_matches_first: bool = True, update_dict_if_ids_not_found: bool = False, use_multiprocessing: bool = False, ) -> pd.DataFrame: """ Maps PROTACs to their substructures. Args: protac_df: The input PROTAC dataframe. dictionaries: The input dictionaries. max_iter_on_linkers: The maximum number of matching linkers to iterate over. If zero, there will be no attempt to match linkers in the dictionary. If negative, iterate over all matched linkers. Default is 0. biggest_matches_first: Whether to sort the matches by the number of atoms in the molecule. Default is True. update_dict_if_ids_not_found: DEPRECATED. Whether to update the dictionary if the substructure IDs are not found. Default is False. use_multiprocessing: Whether to use multiprocessing. Default is False. Returns: The mapped PROTAC dataframe. """ # if use_multiprocessing: # global split_single_protac # with multiprocessing.Pool(processes=multiprocessing.cpu_count()) as pool: # results = pool.map(partial(split_single_protac, dictionaries=dictionaries, biggest_matches_first=biggest_matches_first, max_iter_on_linkers=max_iter_on_linkers), protac_df.copy().to_dict(orient='records')) # mapped_protacs = pd.DataFrame(results) # mapped_protacs = mapped_protacs.dropna(subset=['POI Ligand SMILES with direction', 'E3 Binder SMILES with direction', 'Linker SMILES with direction']) # return mapped_protacs if use_multiprocessing: # TODO: The following does run in parallel, but it gives wrong results. I don't know why. I will have to investigate further. results = Parallel(n_jobs=-1)(delayed(split_single_protac)(row, dictionaries=dictionaries, biggest_matches_first=biggest_matches_first, max_iter_on_linkers=max_iter_on_linkers) for _, row in protac_df.iterrows()) mapped_protacs = pd.DataFrame([r for r in results if r is not None]) return mapped_protacs mapped_protacs = [] for i, row in (pbar := tqdm(protac_df.iterrows(), total=len(protac_df))): pbar.set_description(f'PROTAC n.{i:4d}') r = split_single_protac( row, dictionaries, biggest_matches_first=biggest_matches_first, max_iter_on_linkers=max_iter_on_linkers, split_with_substr_and_linker_matching=split_with_substr_and_linker_matching, ) if r is not None: mapped_protacs.append(r) tmp = pd.DataFrame(mapped_protacs) pbar.set_postfix({'len_mapped': len(tmp), 'perc_mapped': f'{len(tmp) / len(protac_df):.1%}'}) mapped_protacs = pd.DataFrame(mapped_protacs) return mapped_protacs def parse_notes(notes: str) -> Dict[str, Any]: # Define the regex pattern to match key-value pairs within parentheses pattern = r'\(([^=]+)=([^\)]+)\)' # Find all matches in the string matches = re.findall(pattern, notes) # Initialize an empty dictionary to store the parsed key-value pairs parsed_dict = {} # Iterate over the matches and add them to the dictionary for key, value in matches: # Convert the value to the appropriate type (int, bool, None, or str) if value.isdigit(): parsed_dict[key] = int(value) elif value.lower() == 'true': parsed_dict[key] = True elif value.lower() == 'false': parsed_dict[key] = False elif value.lower() == 'none': parsed_dict[key] = None else: parsed_dict[key] = value return parsed_dict def iterative_protac_splitting( dictionaries: Dict[str, pd.DataFrame], data_dir: str, ) -> Dict[str, pd.DataFrame]: """ Map PROTACs to their substructures in an iterative way. Args: dictionaries: The input dictionaries. The same format as the output of the `update_dictionary` function. data_dir: The directory where the output data is stored. Returns: The final mapped PROTAC dataframe. """ final_df = None non_mapped_protacs = dictionaries['PROTAC'].copy() start_from_beginning = True # Re-map all PROTACs ignoring loading previous results step = -1 max_iter_on_linkers = 0 split_with_substr_and_linker_matching = False while True: if max_iter_on_linkers == -1 or non_mapped_protacs.empty or step >= 50: break if max_iter_on_linkers == 5: max_iter_on_linkers = -1 # Iterate over all linkers step += 1 print('-' * 100) print(f'Step n.{step}') print(f'Max iterations on linkers: {max_iter_on_linkers}') print(f'Map with substr and linker matching: {split_with_substr_and_linker_matching}') print('-' * 50) step_filename = os.path.join(data_dir, f'mapped_protacs_{step=}.csv') final_filename = os.path.join(data_dir, 'mapped_protacs.csv') non_mapped_filename = os.path.join(data_dir, 'non_mapped_protacs.csv') if os.path.exists(step_filename) and not start_from_beginning: # Check if all lines of the file are empty with open(step_filename, 'r') as f: lines = f.readlines() if all([len(line.strip()) == 0 for line in lines]): mapped_protacs = pd.DataFrame() else: mapped_protacs = pd.read_csv(step_filename) else: mapped_protacs = split_protacs( non_mapped_protacs, dictionaries=dictionaries, split_with_substr_and_linker_matching=split_with_substr_and_linker_matching, max_iter_on_linkers=max_iter_on_linkers, biggest_matches_first=False, use_multiprocessing=False, ) # Add a string at the end of the strings in the 'Notes' column if not mapped_protacs.empty: mapped_protacs['Notes'] = mapped_protacs['Notes'].apply(lambda x: f'{x}({step=})') mapped_protacs.to_csv(step_filename, index=False) # Update the final dataframe and save it to file if final_df is None: final_df = mapped_protacs else: final_df = pd.concat([final_df, mapped_protacs], axis=0).drop_duplicates(subset=['PROTAC SMILES']) final_df.to_csv(final_filename, index=False) print(f'All mapped PROTACs saved to: {final_filename}') # Reporting information mapped_perc = len(mapped_protacs) / len(non_mapped_protacs) total_mapped_perc = len(final_df) / len(dictionaries['PROTAC']) print(f'Number of mapped PROTACs: {len(mapped_protacs)} ({mapped_perc:.2%})') print(f'Total num. of mapped PROTACs: {len(final_df)} ({total_mapped_perc:.2%})') print('-' * 50) print(final_df['Notes'].value_counts()) print('-' * 50) # Get the non-mapped PROTACs yet and save them to file non_mapped_protacs = dictionaries['PROTAC'][~dictionaries['PROTAC']['SMILES'].isin(final_df['PROTAC SMILES'])].copy() non_mapped_protacs[['SMILES', 'ID']].to_csv(non_mapped_filename, index=False) print(f'Non-mapped PROTACs saved to: {non_mapped_filename}') # Control logic for breaking the loop if mapped_protacs.empty: if max_iter_on_linkers == 0 and not split_with_substr_and_linker_matching: split_with_substr_and_linker_matching = True continue else: max_iter_on_linkers += 1 continue else: # Using only the linker to map the PROTACs can be unreliable, so if we # found new PROTACs, we should the max_iter_on_linkers to zero and try # to map the PROTACs again with the newly found substructures. max_iter_on_linkers = 0 split_with_substr_and_linker_matching = False # Update all dictionaries with the substructures of the mapped PROTACs smiles_list = mapped_protacs['Linker SMILES with direction'].unique() smiles_list = [canonize(smiles) for smiles in smiles_list] dictionaries['Linker with direction'] = update_dictionary(dictionaries['Linker with direction'], smiles_list) # Avoid adding POIs that are in the E3 dictionary! smiles_list = mapped_protacs['POI Ligand SMILES'].unique() smiles_list = [canonize(smiles) for smiles in smiles_list] smiles_list = [s for s in smiles_list if s not in dictionaries['E3 Binder']['SMILES'].values] smiles_list = [remove_dummy_atoms(s) for s in smiles_list if s is not None] # Use Tanimoto similarity to prevent adding POIs too similar to E3s similarity_threshold = 0.5 radius = 2 nbits = 2048 morgan_fp_generator = Chem.rdFingerprintGenerator.GetMorganGenerator(radius=radius, fpSize=nbits, useBondTypes=True, includeChirality=True) pois_to_add = [] for poi_smiles in smiles_list: poi_mol = Chem.MolFromSmiles(poi_smiles) poi_fp = morgan_fp_generator.GetFingerprint(poi_mol) similarities = DataStructs.BulkTanimotoSimilarity(poi_fp, dictionaries['E3 Binder']['FP'].to_list()) skip_poi = False for sim in similarities: if sim >= similarity_threshold: skip_poi = True break if not skip_poi: pois_to_add.append(poi_smiles) dictionaries['POI Ligand'] = update_dictionary(dictionaries['POI Ligand'], smiles_list) # Avoid adding E3s that are in the POI dictionary! smiles_list = mapped_protacs['E3 Binder SMILES'].unique() smiles_list = [canonize(smiles) for smiles in smiles_list] smiles_list = [s for s in smiles_list if s not in dictionaries['POI Ligand']['SMILES'].values] smiles_list = [remove_dummy_atoms(s) for s in smiles_list if s is not None] dictionaries['E3 Binder'] = update_dictionary(dictionaries['E3 Binder'], smiles_list) # Save all dictionaries to file for key, dictionary in dictionaries.items(): filename = os.path.join(data_dir, f'dictionary_{key.lower().replace(" ", "_")}.csv') dictionary[['ID', 'SMILES']].to_csv(filename, index=False) print(f'Dictionary saved to: {filename}') return dictionaries