from typing import Dict, Optional, Union from collections import defaultdict, Counter import json import pandas as pd from rdkit import Chem from rdkit.Chem import Draw from tqdm import tqdm from protac_splitter.chemoinformatics import ( get_atom_idx_at_attachment, canonize_smarts, ) from protac_splitter.display_utils import ( safe_display, display_mol, ) def get_functional_group_at_attachment( protac: Chem.Mol, substruct: Chem.Mol, linker: Chem.Mol, n_hops: int = 1, timeout: Optional[Union[int, float]] = None, return_dict: bool = False, verbose: int = 0, ) -> Union[str, Dict[str, str]]: """ Get the functional group at the attachment point of a substructure in the PROTAC molecule. Args: protac: The PROTAC molecule. substruct: The substructure of the PROTAC that contains the attachment point, e.g., the POI or E3 ligase. linker: The linker molecule. n_hops: The number of hops to consider for the neighborhood. timeout: The timeout for the substructure search. return_dict: Whether to return the functional groups as a dictionary. verbose: Verbosity level. Returns: str | Dict[str, str]: The SMARTS of the functional group at the attachment point. If return_dict is True, a dictionary with the SMARTS of the functional groups at the attachment point and at the "two sides" of the attachment point (keys: 'attachment', 'substruct', 'linker'). """ protac = Chem.AddHs(protac) substruct = Chem.AddHs(substruct) if linker is not None: linker = Chem.AddHs(linker) attachment_idxs = get_atom_idx_at_attachment( protac=protac, substruct=substruct, linker=linker, timeout=timeout, return_dict=True, verbose=0, ) # Get all neighboring atoms that are n_hops away from the attachment point if attachment_idxs is None: return None if len(attachment_idxs) != 2: return None if verbose: print(f'Attachment points: {attachment_idxs}') img = Draw.MolToImage(protac, highlightAtoms=attachment_idxs.values(), size=(800, 500)) safe_display(img) print('Neighbors:') # Recursively find neighbors at n_hops distance neighborhood = set([protac.GetAtomWithIdx(idx) for idx in attachment_idxs.values()]) def find_neighbors(atom, hops, excluded_atom_idx=None): if hops <= 0: return for neighbor in atom.GetNeighbors(): if excluded_atom_idx is not None and neighbor.GetIdx() == excluded_atom_idx: neighborhood.add(neighbor) continue neighborhood.add(neighbor) find_neighbors(neighbor, hops - 1) for idx in attachment_idxs.values(): find_neighbors(protac.GetAtomWithIdx(idx), n_hops) # Display the neighborhood if verbose: print(f'Neighbors at {n_hops} hops:') # Get options to display all hydrogen atoms options = Draw.DrawingOptions() # Add a legend to the image options.legend = 'Neighbors at attachment points' img = Draw.MolToImage(protac, highlightAtoms=[a.GetIdx() for a in neighborhood], size=(800, 500), options=options) safe_display(img) # # NOTE: The following is an overkill, there is an RDKit function to extract a substructure # neighborhood_mol = extract_atoms_as_molecule(protac, [a.GetIdx() for a in neighborhood]) # neighborhood_smarts = canonize_smarts(Chem.MolToSmarts(neighborhood_mol)) # Extract the SMARTS given the atom indices of the neighborhood neighborhood_idxs = [a.GetIdx() for a in neighborhood] neighborhood_smarts = Chem.MolFragmentToSmarts(protac, neighborhood_idxs) neighborhood_smarts = canonize_smarts(neighborhood_smarts) if verbose: print(neighborhood_smarts) display_mol(Chem.MolFromSmarts(neighborhood_smarts), display_svg=False) if return_dict: smarts = {} smarts['attachment'] = neighborhood_smarts # Get the SMARTS at the attachment point and at its "two sides" for side, idx in attachment_idxs.items(): # NOTE: We know that attachment_idxs is a dictionary with two keys, # 'susbtruct' and 'linker', so we can directly use the other key other_side = 'linker' if side == 'substruct' else 'substruct' excluded_atom_idx = attachment_idxs[other_side] neighborhood = {protac.GetAtomWithIdx(idx)} find_neighbors(protac.GetAtomWithIdx(idx), n_hops, excluded_atom_idx=excluded_atom_idx) # Get the atom indices of the neighborhood neighborhood_idxs = [a.GetIdx() for a in neighborhood] # Copy the PROTAC molecule and set the excluded_atom_idx to a dummy p = Chem.Mol(protac) p.GetAtomWithIdx(excluded_atom_idx).SetAtomicNum(0) # Extract the SMARTS from the copied PROTAC given the indeces s = Chem.MolFragmentToSmarts(p, neighborhood_idxs) smarts[other_side] = canonize_smarts(s) return smarts return neighborhood_smarts def get_functional_group_at_attachment_side( substruct: Chem.Mol, attachment_id: Optional[int] = None, n_hops: int = 2, add_Hs: bool = True, ) -> Optional[str]: """ Get the functional group at the attachment point of a substructure in the PROTAC molecule. Args: substruct: The substructure of the PROTAC that contains the attachment point, e.g., the POI or E3 ligase. attachment_id: The attachment point ID in the substructure. E.g., 1 for the POI, as in "[*:1]". n_hops: The number of hops to consider for the neighborhood. Default is 2. add_Hs: Whether to add hydrogens to the substructure. Returns: str: The SMARTS of the functional group at the attachment point. None if failed. """ if add_Hs: substruct = Chem.AddHs(substruct) # Get the atom index of the attachment point, i.e., a dummy atom attachment_idx2map = {} for atom in substruct.GetAtoms(): if atom.GetAtomicNum() == 0: # Get the mapped atom index attachment_idx2map[atom.GetIdx()] = atom.GetAtomMapNum() if not attachment_idx2map: return None # If we are dealing with a linker, get the specific attachment point if attachment_id is not None: attachment_idx = [k for k, v in attachment_idx2map.items() if v == attachment_id] if not attachment_idx: return None attachment_idx = attachment_idx[0] else: attachment_idx = list(attachment_idx2map.keys())[0] neighborhood = {substruct.GetAtomWithIdx(attachment_idx)} def find_neighbors(atom, hops): if hops <= 0: return for neighbor in atom.GetNeighbors(): neighborhood.add(neighbor) find_neighbors(neighbor, hops - 1) find_neighbors(substruct.GetAtomWithIdx(attachment_idx), n_hops) neighborhood_idxs = [a.GetIdx() for a in neighborhood] neighborhood_smarts = Chem.MolFragmentToSmarts(substruct, neighborhood_idxs) if neighborhood_smarts: return canonize_smarts(neighborhood_smarts) return None def get_functional_groups_distributions( df: pd.DataFrame, get_side_chain_info: bool = False, timeout: Optional[Union[int, float]] = None, filename_distributions: Optional[str] = None, filename_mappings: Optional[str] = None, filename_df_with_functional_groups: Optional[str] = None, load_from_file: bool = True, verbose: int = 0, ) -> Dict[str, Dict[str, set]]: """ Get the distributions of functional groups at attachment points in a dataframe of PROTACs. The input dataframe should contain the following columns: - 'PROTAC SMILES': The SMILES of the PROTAC. - 'POI Ligand SMILES with direction': The SMILES of the POI ligand. - 'Linker SMILES with direction': The SMILES of the linker. - 'E3 Binder SMILES with direction': The SMILES of the E3 binder. Args: df: The DataFrame containing the PROTACs. get_side_chain_info: Whether to get the side chain information along with the functional groups at the attachment points. timeout: The timeout for the substructure search. Default is None. verbose: Verbosity level. Returns: Dict[str, Dict[str, set]]: The distributions of functional groups at attachment points in PROTACs. """ smarts_counter = Counter() e3_smarts_counter = Counter() poi_smarts_counter = Counter() substr_smarts_counter = { 'poi2linker': defaultdict(Counter), 'linker2poi': defaultdict(Counter), 'e32linker': defaultdict(Counter), 'linker2e3': defaultdict(Counter), } # Assign to each functional group the list of substructures that appear in the df poi_substr2fg = defaultdict(set) e3_substr2fg = defaultdict(set) # Assign to each substructure the list of functional groups that appear in the df poi_fg_2_substr = defaultdict(set) e3_fg_2_substr = defaultdict(set) substr_fg_2_linker = defaultdict(set) linker2fg = defaultdict(dict) if load_from_file: if filename_distributions is not None and filename_mappings is not None: with open(filename_distributions, 'r') as f: fg_distr = json.load(f) with open(filename_mappings, 'r') as f: fg_mappings = json.load(f) ret = {} ret.update(fg_distr) ret.update(fg_mappings) return ret else: print(f'WARNING: No filename provided to load the mappings from. The functional groups will be recomputed.') df_with_functional_groups = [] for i, row in tqdm(df.iterrows(), total=len(df)): protac_smiles = row['PROTAC SMILES'] poi_smiles = row['POI Ligand SMILES with direction'] linker_smiles = row['Linker SMILES with direction'] e3_smiles = row['E3 Binder SMILES with direction'] protac = Chem.MolFromSmiles(protac_smiles) poi = Chem.MolFromSmiles(poi_smiles) e3 = Chem.MolFromSmiles(e3_smiles) linker = Chem.MolFromSmiles(linker_smiles) if None in [protac, poi, e3, linker]: print(f'WARNING: Could not parse the following SMILES:') print(f'PROTAC: {protac_smiles}') print(f'POI: {poi_smiles}') print(f'Linker: {linker_smiles}') print(f'E3: {e3_smiles}') print('-' * 80) # We have a bit of care with the linker, as it can be empty try: _ = Chem.molzip(Chem.MolFromSmiles('.'.join([poi_smiles, linker_smiles, e3_smiles]))) except: print(f'WARNING: The linker might be empty: {linker_smiles}') linker = None if linker is not None: fg_poi = get_functional_group_at_attachment(protac, poi, linker, timeout=timeout, return_dict=get_side_chain_info) fg_e3 = get_functional_group_at_attachment(protac, e3, linker, timeout=timeout, return_dict=get_side_chain_info) else: # If the linker is empty, then we use the other side as the linker fg_poi = get_functional_group_at_attachment(protac, poi, e3, return_dict=get_side_chain_info) fg_e3 = get_functional_group_at_attachment(protac, e3, poi, return_dict=get_side_chain_info) if get_side_chain_info: if fg_poi is not None: smarts_counter.update([fg_poi['attachment']]) poi_smarts_counter.update([fg_poi['substruct']]) substr_smarts_counter['poi2linker'][fg_poi['substruct']].update([fg_poi['linker']]) substr_smarts_counter['linker2poi'][fg_poi['linker']].update([fg_poi['substruct']]) linker2fg[linker_smiles]['poi'] = fg_poi['attachment'] poi_substr2fg[poi_smiles].append(fg_poi['attachment']) poi_fg_2_substr[fg_poi['attachment']].update([poi_smiles]) if fg_e3 is not None: smarts_counter.update([fg_e3['attachment']]) e3_smarts_counter.update([fg_e3['substruct']]) substr_smarts_counter['e32linker'][fg_e3['substruct']].update([fg_e3['linker']]) substr_smarts_counter['linker2e3'][fg_e3['linker']].update([fg_e3['substruct']]) linker2fg[linker_smiles]['e3'] = fg_e3['attachment'] e3_substr2fg[e3_smiles].update(fg_e3['attachment']) e3_fg_2_substr[fg_e3['attachment']].update([e3_smiles]) else: if fg_poi is not None: smarts_counter.update([fg_poi]) poi_smarts_counter.update([fg_poi]) poi_substr2fg[poi_smiles].update([fg_poi]) poi_fg_2_substr[fg_poi].update([poi_smiles]) substr_fg_2_linker[fg_poi].update([linker_smiles]) if fg_e3 is not None: smarts_counter.update([fg_e3]) e3_smarts_counter.update([fg_e3]) e3_substr2fg[e3_smiles].update([fg_e3]) e3_fg_2_substr[fg_e3].update([e3_smiles]) substr_fg_2_linker[fg_e3].update([linker_smiles]) # Update the DataFrame with the functional groups if fg_poi is not None: row['POI Ligand Functional Group'] = fg_poi if fg_e3 is not None: row['E3 Binder Functional Group'] = fg_e3 df_with_functional_groups.append(row) # Normalize all the counts to probability distributions fg_distr = {k: v / smarts_counter.total() for k, v in smarts_counter.items()} e3_fg_distr = {k: v / e3_smarts_counter.total() for k, v in e3_smarts_counter.items()} poi_fg_distr = {k: v / poi_smarts_counter.total() for k, v in poi_smarts_counter.items()} # Sort the probability distributions fg_distr = dict(sorted(fg_distr.items(), key=lambda x: x[1], reverse=True)) e3_fg_distr = dict(sorted(e3_fg_distr.items(), key=lambda x: x[1], reverse=True)) poi_fg_distr = dict(sorted(poi_fg_distr.items(), key=lambda x: x[1], reverse=True)) if not get_side_chain_info: ret = { 'fg_distr': fg_distr, 'e3_fg_distr': e3_fg_distr, 'poi_fg_distr': poi_fg_distr, 'poi_fg_2_substr': poi_fg_2_substr, 'e3_fg_2_substr': e3_fg_2_substr, 'substr_fg_2_linker': substr_fg_2_linker, } # Normalize the linker-to-substructure to probability distributions if get_side_chain_info: side_fg_distr = defaultdict(dict) for direction, smarts2counter in substr_smarts_counter.items(): for smarts, counter in smarts2counter.items(): side_fg_distr[direction][smarts] = {k: v / counter.total() for k, v in counter.items()} side_fg_distr[direction][smarts] = dict(sorted(side_fg_distr[direction][smarts].items(), key=lambda x: x[1], reverse=True)) if verbose: # Display the top 5 functional groups print('-' * 80) print(f'{"-".join(direction.upper().split("2"))}:') print('-' * len(direction) + '-' * 2) for i, (smarts, probs) in enumerate(side_fg_distr[direction].items()): if i >= 5: break print(f'{smarts}:') for j, (sma, prob) in enumerate(probs.items()): if j >= 5: break print(f'\t{prob:.2%} -> {sma}') ret = { 'fg_distr': fg_distr, 'e3_fg_distr': e3_fg_distr, 'poi_fg_distr': poi_fg_distr, 'poi_fg_2_substr': poi_fg_2_substr, 'e3_fg_2_substr': e3_fg_2_substr, 'substr_fg_2_linker': substr_fg_2_linker, 'side_fg_distr': side_fg_distr, } if filename_distributions is not None: # Save to JSON file distributions = {k: v for k, v in ret.items() if 'distr' in k} with open(filename_distributions, 'w') as f: json.dump(distributions, f, indent=4) print(f'Functional group distributions saved to: {filename_distributions}') if filename_mappings is not None: # Convert sets to lists to make the data serializable fg_mappings = {k: {sk: list(s) for sk, s in v.items()} for k, v in ret.items() if 'distr' not in k} with open(filename_mappings, 'w') as f: json.dump(fg_mappings, f, indent=4) print(f'Functional group mappings saved to: {filename_mappings}') df_with_functional_groups = pd.DataFrame(df_with_functional_groups) ret['dataframe'] = df_with_functional_groups if filename_df_with_functional_groups is not None: df_with_functional_groups.to_csv(filename_df_with_functional_groups, index=False) print(f'DataFrame with functional groups saved to: {filename_df_with_functional_groups}') return ret