File size: 876 Bytes
09366c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from datasets import load_dataset
from transformers import AutoTokenizer


TARGET = 'discourse_effectiveness'
TEXT = "discourse_text"
train_df = pd.read_csv("data/raw_data/train.csv")
test_df = pd.read_csv("data/raw_data/test.csv")


"""
train_df[TARGET].value_counts(ascending=True).plot.barh()
plt.title("Frequency of Classes")
plt.show()

train_df['discourse_type'].value_counts(ascending=True).plot.barh()
plt.title("Frequency of discourse_type")
plt.show()

train_df["Words Per text"] = train_df[TEXT].str.split().apply(len)
train_df.boxplot("Words Per text", by=TARGET, grid=False, showfliers=False,
           color="black")
plt.suptitle("")
plt.xlabel("")
plt.show()
"""


model_ckpt = "distilbert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
tokenizer.model_max_length
pass