aimlnerd's picture
add
4f607de
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments, pipeline, DataCollatorWithPadding
from sklearn.metrics import accuracy_score, f1_score
import torch
import numpy as np
import torch.nn.functional as F
import matplotlib.pyplot as plt
from typing import List
from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
from umap import UMAP
from sklearn.preprocessing import MinMaxScaler
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class TransformersSequenceClassifier:
def __init__(self,
model_output_dir,
num_labels,
tokenizer : AutoTokenizer,
id2label,
label2id,
model_checkpoint="distilbert-base-uncased"
):
self.model_output_dir = model_output_dir
self.tokenizer = tokenizer
self.model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=num_labels, id2label=id2label, label2id=label2id).to(device)
def tokenizer_batch(self, batch):
return self.tokenizer(batch["inputs"], truncation=True, padding=True, return_tensors="pt") #, max_len=386
def tokenize_dataset(self, dataset):
return dataset.map(self.tokenizer_batch, batched=True, remove_columns=('inputs', '__index_level_0__'))
@staticmethod
def extract_hidden_states(batch, tokenizer, model):
# Place model inputs on the GPU
inputs = {k:v for k,v in batch.items() if k in tokenizer.model_input_names} #.to(device)
# Extract last hidden states
with torch.no_grad():
last_hidden_state = model(**inputs).last_hidden_state
# Return vector for [CLS] token
return {"hidden_state": last_hidden_state[:,0].cpu().numpy()}
@staticmethod
def fit_umap(df_x):
# Scale features to [0,1] range
X_scaled = MinMaxScaler().fit_transform(df_x)
# Initialize and fit UMAP
mapper = UMAP(n_components=2, metric="cosine").fit(X_scaled)
return mapper.embedding_
# Create a DataFrame of 2D embeddings
def train(self, train_dataset, eval_dataset, batch_size, epochs):
#data_collator = DataCollatorWithPadding(tokenizer=self.tokenizer, padding='longest')
training_args = TrainingArguments(output_dir=self.model_output_dir,
num_train_epochs=epochs,
learning_rate=2e-5,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
weight_decay=0.01,
evaluation_strategy="epoch",
save_strategy='epoch',
disable_tqdm=False,
logging_steps=len(train_dataset)//batch_size,
push_to_hub=True,
load_best_model_at_end=True,
log_level="error")
self.trainer = Trainer(
model=self.model,
args=training_args,
compute_metrics=self._compute_metrics,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=self.tokenizer,
#data_collator=data_collator
)
self.trainer.train()
self.trainer.push_to_hub(commit_message="Training completed!")
@staticmethod
def _compute_metrics(pred):
labels = pred.label_ids
preds = pred.predictions.argmax(-1)
f1 = f1_score(labels, preds, average="weighted")
acc = accuracy_score(labels, preds)
return {"accuracy": acc, "f1": f1}
def forward_pass_with_label(self, batch):
# Place all input tensors on the same device as the model
inputs = {k:v.to(device) for k,v in batch.items()
if k in self.tokenizer.model_input_names}
with torch.no_grad():
output = self.model(**inputs)
pred_label = torch.argmax(output.logits, axis=-1)
loss = F.cross_entropy(output.logits, batch["label"].to(device),
reduction="none")
# Place outputs on CPU for compatibility with other dataset columns
return {"loss": loss.cpu().numpy(),
"predicted_label": pred_label.cpu().numpy()}
def compute_loss_per_pred(self, valid_dataset):
# Compute loss values
return valid_dataset.map(self.forward_pass_with_label, batched=True, batch_size=16)
@staticmethod
def plot_confusion_matrix(y_preds, y_true, label_names):
cm = confusion_matrix(y_true, y_preds, normalize="true")
fig, ax = plt.subplots(figsize=(6, 6))
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=label_names)
disp.plot(cmap="Blues", values_format=".2f", ax=ax, colorbar=False)
plt.title("Normalized confusion matrix")
plt.show()
def predict_argmax_logit(self, valid_dataset):
#trainer = Trainer(model=self.model)
preds_output = self.trainer.predict(valid_dataset)
print(preds_output.metrics)
y_preds = np.argmax(preds_output.predictions, axis=1)
return y_preds
@staticmethod
def predict_pipeline(model_checkpoint, test_list: List[str]) -> List:
pipe_classifier = pipeline("text-classification", model=model_checkpoint)
preds = pipe_classifier(test_list, return_all_scores=True)
return preds