Spaces:
Runtime error
Runtime error
predicting-effective-arguments-in-essay
/
source
/services
/predicting_effective_arguments
/train
/train_seq_classification.py
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from datasets import load_dataset | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from datasets import Dataset, load_metric | |
from sklearn.model_selection import train_test_split | |
from source.services.predicting_effective_arguments.train.model import TransformersSequenceClassifier | |
class CFG: | |
TARGET = 'discourse_effectiveness' | |
TEXT = "discourse_text" | |
MODEL_CHECKPOINT = "distilbert-base-uncased" | |
MODEL_OUTPUT_DIR ='source/services/predicting_effective_arguments/model/hf_textclassification/predicting_effective_arguments_distilbert' | |
model_name="debertav3base" | |
learning_rate=1.5e-5 | |
weight_decay=0.02 | |
hidden_dropout_prob=0.007 | |
attention_probs_dropout_prob=0.007 | |
num_train_epochs=10 | |
n_splits=4 | |
batch_size=12 | |
random_seed=42 | |
save_steps=100 | |
max_length=512 | |
def seed_everything(seed: int): | |
import random, os | |
import numpy as np | |
import torch | |
random.seed(seed) | |
os.environ['PYTHONHASHSEED'] = str(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = True | |
def prepare_input_text(df, sep_token): | |
df['inputs'] = df.discourse_type.str.lower() + ' ' + sep_token + ' ' + df.discourse_text.str.lower() | |
return df | |
if __name__ == '__main__': | |
config = CFG() | |
tokenizer = AutoTokenizer.from_pretrained(config.MODEL_CHECKPOINT) | |
data = pd.read_csv("data/raw_data/train.csv")[:100] | |
label_names = list(data[config.TARGET].unique()) | |
#score_df = pd.read_csv("data/raw_data/test.csv") | |
""" | |
data[TARGET].value_counts(ascending=True).plot.barh() | |
plt.title("Frequency of Classes") | |
plt.show() | |
data['discourse_type'].value_counts(ascending=True).plot.barh() | |
plt.title("Frequency of discourse_type") | |
plt.show() | |
data["Words Per text"] = data[TEXT].str.split().apply(len) | |
data.boxplot("Words Per text", by=TARGET, grid=False, showfliers=False, | |
color="black") | |
plt.suptitle("") | |
plt.xlabel("") | |
plt.show() | |
""" | |
train_size = 0.7 | |
valid_size = 0.2 | |
test_size = 0.1 | |
# First split: Separate out the training set | |
train_df, temp_df = train_test_split(data, test_size=1 - train_size, random_state=5600) | |
# Second split: Separate out the validation and test sets | |
valid_df, test_df = train_test_split(temp_df, test_size=test_size / (test_size + valid_size), random_state=5600) | |
train_df = prepare_input_text(train_df, sep_token=tokenizer.sep_token) | |
valid_df = prepare_input_text(valid_df, sep_token=tokenizer.sep_token) | |
test_df = prepare_input_text(test_df, sep_token=tokenizer.sep_token) | |
train_dataset = Dataset.from_pandas(train_df[['inputs', config.TARGET]]).rename_column(config.TARGET, 'label').class_encode_column("label") | |
val_dataset = Dataset.from_pandas(valid_df[['inputs', config.TARGET]]).rename_column(config.TARGET, 'label').class_encode_column("label") | |
test_dataset = Dataset.from_pandas(test_df[['inputs', config.TARGET]]).rename_column(config.TARGET, 'label').class_encode_column("label") | |
id2label = {i: label for i, label in enumerate(label_names)} | |
label2id = {v: k for k, v in id2label.items()} | |
seqClassifer = TransformersSequenceClassifier(model_output_dir=config.MODEL_OUTPUT_DIR, | |
tokenizer=tokenizer, | |
model_checkpoint="distilbert-base-uncased", | |
num_labels=3, | |
id2label=id2label, | |
label2id=label2id) | |
train_tok_dataset = seqClassifer.tokenize_dataset(dataset=train_dataset) | |
val_tok_dataset = seqClassifer.tokenize_dataset(dataset=val_dataset) | |
test_tok_dataset = seqClassifer.tokenize_dataset(dataset=test_dataset) | |
seqClassifer.train(train_dataset=train_tok_dataset, eval_dataset=val_tok_dataset, epochs=1, batch_size=16) | |
y_test_pred = seqClassifer.predict_argmax_logit(test_tok_dataset) | |
seqClassifer.plot_confusion_matrix(y_preds=y_test_pred, y_true=test_dataset['label'], label_names=label_names) | |
y_pred = seqClassifer.predict_pipeline(model_checkpoint=config.MODEL_OUTPUT_DIR, test_list=test_df['inputs'].tolist()) | |
#hidden = train_tok_dataset.map(seqClassifer.extract_hidden_states, | |
# batched=True, | |
# fn_kwargs={'tokenizer': AutoTokenizer.from_pretrained(config.MODEL_OUTPUT_DIR), | |
# 'model': AutoModelForSequenceClassification.from_pretrained(config.MODEL_OUTPUT_DIR)}) | |
pass | |