import pandas as pd import numpy as np import matplotlib.pyplot as plt from datasets import load_dataset from transformers import AutoTokenizer TARGET = 'discourse_effectiveness' TEXT = "discourse_text" train_df = pd.read_csv("data/raw_data/train.csv") test_df = pd.read_csv("data/raw_data/test.csv") """ train_df[TARGET].value_counts(ascending=True).plot.barh() plt.title("Frequency of Classes") plt.show() train_df['discourse_type'].value_counts(ascending=True).plot.barh() plt.title("Frequency of discourse_type") plt.show() train_df["Words Per text"] = train_df[TEXT].str.split().apply(len) train_df.boxplot("Words Per text", by=TARGET, grid=False, showfliers=False, color="black") plt.suptitle("") plt.xlabel("") plt.show() """ model_ckpt = "distilbert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(model_ckpt) tokenizer.model_max_length pass