Alexandra Zapko-Willmes commited on
Commit
279e4b4
·
verified ·
1 Parent(s): 14bd759

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +78 -30
app.py CHANGED
@@ -1,41 +1,74 @@
1
  import gradio as gr
2
- from transformers import pipeline
3
  import pandas as pd
4
  import io
5
 
6
- # Load once
7
- classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  response_table = []
10
 
11
- def classify_items(questions_text, labels_text):
12
- questions = [q.strip() for q in questions_text.strip().split("\n") if q.strip()]
13
- labels = [l.strip() for l in labels_text.strip().split(",") if l.strip()]
14
-
15
  if not labels or not questions:
16
- return "Please provide both items and at least two response options.", ""
17
 
 
18
  global response_table
19
  response_table = []
20
  output_lines = []
21
 
22
  for i, question in enumerate(questions, 1):
23
  result = classifier(question, labels, multi_label=False)
24
- probs = dict(zip(result['labels'], result['scores']))
25
-
26
  output_lines.append(f"{i}. {question}")
27
- for label in labels:
28
- output_lines.append(f"→ {label}: {round(probs.get(label, 0.0), 3)}")
 
29
  output_lines.append("")
30
-
31
- row = {"Item #": i, "Item": question}
32
- row.update({label: round(probs.get(label, 0.0), 3) for label in labels})
33
  response_table.append(row)
34
 
35
  return "\n".join(output_lines), None
36
 
37
- def download_csv():
 
 
 
 
 
 
 
 
38
  global response_table
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  if not response_table:
40
  return None
41
  df = pd.DataFrame(response_table)
@@ -43,22 +76,37 @@ def download_csv():
43
  df.to_csv(csv_buffer, index=False)
44
  return csv_buffer.getvalue()
45
 
46
- # Gradio UI
47
  with gr.Blocks() as demo:
48
- gr.Markdown("# 🧠 Zero-Shot Classification for Questionnaire Responses")
49
- gr.Markdown("Paste questionnaire items (one per line), and provide your own response labels (comma-separated).")
 
 
50
 
51
  with gr.Row():
52
- with gr.Column():
53
- questions_input = gr.Textbox(label="Questionnaire Items", lines=10, placeholder="e.g.\nI feel in control of my life.\nI enjoy being around others.")
54
- labels_input = gr.Textbox(label="Response Options (comma-separated)", placeholder="Strongly disagree, Disagree, Neutral, Agree, Strongly agree")
55
- submit_btn = gr.Button("Classify Items")
56
- csv_btn = gr.Button("📥 Download CSV")
57
- with gr.Column():
58
- output_box = gr.Textbox(label="Classification Output", lines=20)
59
- file_output = gr.File(label="Download CSV", visible=False)
60
-
61
- submit_btn.click(fn=classify_items, inputs=[questions_input, labels_input], outputs=[output_box, file_output])
62
- csv_btn.click(fn=download_csv, inputs=[], outputs=file_output)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
  demo.launch()
 
1
  import gradio as gr
 
2
  import pandas as pd
3
  import io
4
 
5
+ from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForCausalLM
6
+ import torch
7
 
8
+ # Model lists
9
+ zero_shot_models = {
10
+ "EN: deberta-v3-large-zeroshot": "MoritzLaurer/deberta-v3-large-zeroshot-v2.0",
11
+ "MULTI: mDeBERTa-v3-base-xnli": "MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7",
12
+ "MULTI: xlm-roberta-large-xnli": "joeddav/xlm-roberta-large-xnli"
13
+ }
14
+
15
+ text_gen_models = {
16
+ "Mixtral-8x7B-Instruct": "mistralai/Mixtral-8x7B-Instruct-v0.1",
17
+ "DeepSeek-Qwen3-8B": "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
18
+ "DeepSeek-52B": "deepseek-ai/DeepSeek-R1-0528",
19
+ "LLaMA-3.1-8B-Instruct": "meta-llama/Llama-3.1-8B-Instruct"
20
+ }
21
+
22
+ # Shared storage for results
23
  response_table = []
24
 
25
+ def run_classification(questions_text, labels_text, model_name):
26
+ labels = [label.strip() for label in labels_text.split(",") if label.strip()]
27
+ questions = [q.strip() for q in questions_text.split("\n") if q.strip()]
 
28
  if not labels or not questions:
29
+ return "Please enter both items and response options.", None
30
 
31
+ classifier = pipeline("zero-shot-classification", model=model_name)
32
  global response_table
33
  response_table = []
34
  output_lines = []
35
 
36
  for i, question in enumerate(questions, 1):
37
  result = classifier(question, labels, multi_label=False)
38
+ row = {"Item #": i, "Item": question}
 
39
  output_lines.append(f"{i}. {question}")
40
+ for label, score in zip(result["labels"], result["scores"]):
41
+ row[label] = round(score, 3)
42
+ output_lines.append(f"→ {label}: {round(score, 3)}")
43
  output_lines.append("")
 
 
 
44
  response_table.append(row)
45
 
46
  return "\n".join(output_lines), None
47
 
48
+ def run_generation(questions_text, model_name):
49
+ questions = [q.strip() for q in questions_text.split("\n") if q.strip()]
50
+ if not questions:
51
+ return "Please enter at least one item.", None
52
+
53
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
54
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32)
55
+ model.eval()
56
+
57
  global response_table
58
+ response_table = []
59
+ output_lines = []
60
+
61
+ for i, question in enumerate(questions, 1):
62
+ prompt = f"Please respond to the following item as if you were a survey participant:\n\"{question}\""
63
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
64
+ outputs = model.generate(**inputs, max_new_tokens=60)
65
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True).split("\n")[-1]
66
+ output_lines.append(f"{i}. {question}\n→ {response.strip()}\n")
67
+ response_table.append({"Item #": i, "Item": question, "Response": response.strip()})
68
+
69
+ return "\n".join(output_lines), None
70
+
71
+ def download_csv():
72
  if not response_table:
73
  return None
74
  df = pd.DataFrame(response_table)
 
76
  df.to_csv(csv_buffer, index=False)
77
  return csv_buffer.getvalue()
78
 
 
79
  with gr.Blocks() as demo:
80
+ gr.Markdown("# 🧠 LLM Questionnaire Response Tool")
81
+ gr.Markdown("Choose between **zero-shot classification** and **text generation**. Enter your questionnaire items, select a model, and view responses. You can download all results as a CSV.")
82
+
83
+ task_type = gr.Radio(["Zero-shot classification", "Text generation"], label="Task Type", value="Zero-shot classification")
84
 
85
  with gr.Row():
86
+ model_selector = gr.Dropdown(label="Choose Model")
87
+ labels_input = gr.Textbox(label="Response Options (comma-separated)", visible=True)
88
+
89
+ questions_input = gr.Textbox(label="Questionnaire Items (one per line)", lines=10)
90
+ output_box = gr.Textbox(label="Model Output", lines=20)
91
+ submit_btn = gr.Button("Run")
92
+ download_btn = gr.Button("📥 Download CSV")
93
+ file_output = gr.File(label="CSV", visible=False)
94
+
95
+ def update_model_and_labels(task):
96
+ if task == "Zero-shot classification":
97
+ return gr.Dropdown.update(choices=list(zero_shot_models.keys()), value=list(zero_shot_models.keys())[0]), gr.Textbox.update(visible=True)
98
+ else:
99
+ return gr.Dropdown.update(choices=list(text_gen_models.keys()), value=list(text_gen_models.keys())[0]), gr.Textbox.update(visible=False)
100
+
101
+ task_type.change(fn=update_model_and_labels, inputs=task_type, outputs=[model_selector, labels_input])
102
+
103
+ def route_task(questions, labels, model_ui_name, task):
104
+ if task == "Zero-shot classification":
105
+ return run_classification(questions, labels, zero_shot_models[model_ui_name])
106
+ else:
107
+ return run_generation(questions, text_gen_models[model_ui_name])
108
+
109
+ submit_btn.click(fn=route_task, inputs=[questions_input, labels_input, model_selector, task_type], outputs=[output_box, file_output])
110
+ download_btn.click(fn=download_csv, inputs=[], outputs=file_output)
111
 
112
  demo.launch()