Spaces:
Sleeping
Sleeping
Alexandra Zapko-Willmes
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,60 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
import pandas as pd
|
4 |
import io
|
|
|
5 |
|
6 |
-
#
|
7 |
-
|
|
|
|
|
|
|
|
|
8 |
|
9 |
response_table = []
|
10 |
|
11 |
-
def classify_items(questions_text, labels_text):
|
|
|
12 |
questions = [q.strip() for q in questions_text.strip().split("\n") if q.strip()]
|
13 |
-
labels = [l.strip() for l in labels_text.strip().split(",") if l.strip()]
|
14 |
-
|
15 |
if not labels or not questions:
|
16 |
-
return "Please
|
17 |
|
|
|
18 |
global response_table
|
19 |
response_table = []
|
20 |
output_lines = []
|
21 |
|
22 |
for i, question in enumerate(questions, 1):
|
23 |
result = classifier(question, labels, multi_label=False)
|
24 |
-
|
25 |
-
|
26 |
output_lines.append(f"{i}. {question}")
|
27 |
-
for label in labels:
|
28 |
-
|
|
|
29 |
output_lines.append("")
|
30 |
-
|
31 |
-
row = {"Item #": i, "Item": question}
|
32 |
-
row.update({label: round(probs.get(label, 0.0), 3) for label in labels})
|
33 |
response_table.append(row)
|
34 |
|
35 |
return "\n".join(output_lines), None
|
36 |
|
37 |
def download_csv():
|
38 |
-
global response_table
|
39 |
-
if not response_table:
|
40 |
-
return None
|
41 |
df = pd.DataFrame(response_table)
|
42 |
-
|
43 |
-
df.to_csv(
|
44 |
-
return
|
45 |
|
46 |
-
# Gradio
|
47 |
with gr.Blocks() as demo:
|
48 |
-
gr.Markdown("
|
49 |
-
gr.Markdown("
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
submit_btn.click(fn=classify_items, inputs=[questions_input, labels_input], outputs=[output_box, file_output])
|
62 |
-
csv_btn.click(fn=download_csv, inputs=[], outputs=file_output)
|
63 |
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import pandas as pd
|
3 |
import io
|
4 |
+
from transformers import pipeline
|
5 |
|
6 |
+
# Available zero-shot classification models
|
7 |
+
models = {
|
8 |
+
"EN: deberta-v3-large-zeroshot": "MoritzLaurer/deberta-v3-large-zeroshot-v2.0",
|
9 |
+
"MULTI: mDeBERTa-v3-xnli": "MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7",
|
10 |
+
"MULTI: xlm-roberta-xnli": "joeddav/xlm-roberta-large-xnli"
|
11 |
+
}
|
12 |
|
13 |
response_table = []
|
14 |
|
15 |
+
def classify_items(questions_text, labels_text, model_choice):
|
16 |
+
labels = [l.strip() for l in labels_text.split(",") if l.strip()]
|
17 |
questions = [q.strip() for q in questions_text.strip().split("\n") if q.strip()]
|
|
|
|
|
18 |
if not labels or not questions:
|
19 |
+
return "Please enter both questionnaire items and response labels.", None
|
20 |
|
21 |
+
classifier = pipeline("zero-shot-classification", model=models[model_choice])
|
22 |
global response_table
|
23 |
response_table = []
|
24 |
output_lines = []
|
25 |
|
26 |
for i, question in enumerate(questions, 1):
|
27 |
result = classifier(question, labels, multi_label=False)
|
28 |
+
row = {"Item #": i, "Item": question}
|
|
|
29 |
output_lines.append(f"{i}. {question}")
|
30 |
+
for label, score in zip(result["labels"], result["scores"]):
|
31 |
+
row[label] = round(score, 3)
|
32 |
+
output_lines.append(f"→ {label}: {round(score, 3)}")
|
33 |
output_lines.append("")
|
|
|
|
|
|
|
34 |
response_table.append(row)
|
35 |
|
36 |
return "\n".join(output_lines), None
|
37 |
|
38 |
def download_csv():
|
|
|
|
|
|
|
39 |
df = pd.DataFrame(response_table)
|
40 |
+
buffer = io.StringIO()
|
41 |
+
df.to_csv(buffer, index=False)
|
42 |
+
return buffer.getvalue()
|
43 |
|
44 |
+
# Gradio interface
|
45 |
with gr.Blocks() as demo:
|
46 |
+
gr.Markdown("## 🧠 Zero-Shot Classification with Model Selection")
|
47 |
+
gr.Markdown("Students can enter multiple questionnaire items and define their own response labels. The selected model will classify each item and provide probabilities.")
|
48 |
+
|
49 |
+
model_dropdown = gr.Dropdown(choices=list(models.keys()), label="Choose a model")
|
50 |
+
labels_input = gr.Textbox(label="Response Options (comma-separated)", placeholder="e.g., Strongly disagree, Disagree, Neutral, Agree, Strongly agree")
|
51 |
+
questions_input = gr.Textbox(label="Questionnaire Items (one per line)", lines=10)
|
52 |
+
output_box = gr.Textbox(label="Model Output", lines=20)
|
53 |
+
submit_btn = gr.Button("Classify")
|
54 |
+
download_btn = gr.Button("📥 Download CSV")
|
55 |
+
file_output = gr.File(label="Download CSV", visible=False)
|
56 |
+
|
57 |
+
submit_btn.click(fn=classify_items, inputs=[questions_input, labels_input, model_dropdown], outputs=[output_box, file_output])
|
58 |
+
download_btn.click(fn=download_csv, inputs=[], outputs=file_output)
|
|
|
|
|
59 |
|
60 |
demo.launch()
|