|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Tuple |
|
|
|
import dgl |
|
import pathlib |
|
import torch |
|
from dgl.data import QM9EdgeDataset |
|
from dgl import DGLGraph |
|
from torch import Tensor |
|
from torch.utils.data import random_split, DataLoader, Dataset |
|
from tqdm import tqdm |
|
|
|
from se3_transformer.data_loading.data_module import DataModule |
|
from se3_transformer.model.basis import get_basis |
|
from se3_transformer.runtime.utils import get_local_rank, str2bool, using_tensor_cores |
|
|
|
|
|
def _get_relative_pos(qm9_graph: DGLGraph) -> Tensor: |
|
x = qm9_graph.ndata['pos'] |
|
src, dst = qm9_graph.edges() |
|
rel_pos = x[dst] - x[src] |
|
return rel_pos |
|
|
|
|
|
def _get_split_sizes(full_dataset: Dataset) -> Tuple[int, int, int]: |
|
len_full = len(full_dataset) |
|
len_train = 100_000 |
|
len_test = int(0.1 * len_full) |
|
len_val = len_full - len_train - len_test |
|
return len_train, len_val, len_test |
|
|
|
|
|
class QM9DataModule(DataModule): |
|
""" |
|
Datamodule wrapping https://docs.dgl.ai/en/latest/api/python/dgl.data.html#qm9edge-dataset |
|
Training set is 100k molecules. Test set is 10% of the dataset. Validation set is the rest. |
|
This includes all the molecules from QM9 except the ones that are uncharacterized. |
|
""" |
|
|
|
NODE_FEATURE_DIM = 6 |
|
EDGE_FEATURE_DIM = 4 |
|
|
|
def __init__(self, |
|
data_dir: pathlib.Path, |
|
task: str = 'homo', |
|
batch_size: int = 240, |
|
num_workers: int = 8, |
|
num_degrees: int = 4, |
|
amp: bool = False, |
|
precompute_bases: bool = False, |
|
**kwargs): |
|
self.data_dir = data_dir |
|
super().__init__(batch_size=batch_size, num_workers=num_workers, collate_fn=self._collate) |
|
self.amp = amp |
|
self.task = task |
|
self.batch_size = batch_size |
|
self.num_degrees = num_degrees |
|
|
|
qm9_kwargs = dict(label_keys=[self.task], verbose=False, raw_dir=str(data_dir)) |
|
if precompute_bases: |
|
bases_kwargs = dict(max_degree=num_degrees - 1, use_pad_trick=using_tensor_cores(amp), amp=amp) |
|
full_dataset = CachedBasesQM9EdgeDataset(bases_kwargs=bases_kwargs, batch_size=batch_size, **qm9_kwargs) |
|
else: |
|
full_dataset = QM9EdgeDataset(**qm9_kwargs) |
|
|
|
self.ds_train, self.ds_val, self.ds_test = random_split(full_dataset, _get_split_sizes(full_dataset), |
|
generator=torch.Generator().manual_seed(0)) |
|
|
|
train_targets = full_dataset.targets[self.ds_train.indices, full_dataset.label_keys[0]] |
|
self.targets_mean = train_targets.mean() |
|
self.targets_std = train_targets.std() |
|
|
|
def prepare_data(self): |
|
|
|
QM9EdgeDataset(verbose=True, raw_dir=str(self.data_dir)) |
|
|
|
def _collate(self, samples): |
|
graphs, y, *bases = map(list, zip(*samples)) |
|
batched_graph = dgl.batch(graphs) |
|
edge_feats = {'0': batched_graph.edata['edge_attr'][..., None]} |
|
batched_graph.edata['rel_pos'] = _get_relative_pos(batched_graph) |
|
|
|
node_feats = {'0': batched_graph.ndata['attr'][:, :6, None]} |
|
targets = (torch.cat(y) - self.targets_mean) / self.targets_std |
|
|
|
if bases: |
|
|
|
all_bases = { |
|
key: torch.cat([b[key] for b in bases[0]], dim=0) |
|
for key in bases[0][0].keys() |
|
} |
|
|
|
return batched_graph, node_feats, edge_feats, all_bases, targets |
|
else: |
|
return batched_graph, node_feats, edge_feats, targets |
|
|
|
@staticmethod |
|
def add_argparse_args(parent_parser): |
|
parser = parent_parser.add_argument_group("QM9 dataset") |
|
parser.add_argument('--task', type=str, default='homo', const='homo', nargs='?', |
|
choices=['mu', 'alpha', 'homo', 'lumo', 'gap', 'r2', 'zpve', 'U0', 'U', 'H', 'G', 'Cv', |
|
'U0_atom', 'U_atom', 'H_atom', 'G_atom', 'A', 'B', 'C'], |
|
help='Regression task to train on') |
|
parser.add_argument('--precompute_bases', type=str2bool, nargs='?', const=True, default=False, |
|
help='Precompute bases at the beginning of the script during dataset initialization,' |
|
' instead of computing them at the beginning of each forward pass.') |
|
return parent_parser |
|
|
|
def __repr__(self): |
|
return f'QM9({self.task})' |
|
|
|
|
|
class CachedBasesQM9EdgeDataset(QM9EdgeDataset): |
|
""" Dataset extending the QM9 dataset from DGL with precomputed (cached in RAM) pairwise bases """ |
|
|
|
def __init__(self, bases_kwargs: dict, batch_size: int, *args, **kwargs): |
|
""" |
|
:param bases_kwargs: Arguments to feed the bases computation function |
|
:param batch_size: Batch size to use when iterating over the dataset for computing bases |
|
""" |
|
self.bases_kwargs = bases_kwargs |
|
self.batch_size = batch_size |
|
self.bases = None |
|
super().__init__(*args, **kwargs) |
|
|
|
def load(self): |
|
super().load() |
|
|
|
|
|
dataloader = DataLoader(self, shuffle=False, batch_size=self.batch_size, |
|
collate_fn=lambda samples: dgl.batch([sample[0] for sample in samples])) |
|
bases = [] |
|
for i, graph in tqdm(enumerate(dataloader), total=len(dataloader), desc='Precomputing QM9 bases', |
|
disable=get_local_rank() != 0): |
|
rel_pos = _get_relative_pos(graph) |
|
|
|
bases.append({k: v.cpu() for k, v in get_basis(rel_pos.cuda(), **self.bases_kwargs).items()}) |
|
self.bases = bases |
|
|
|
def __getitem__(self, idx: int): |
|
graph, label = super().__getitem__(idx) |
|
|
|
if self.bases: |
|
bases_idx = idx // self.batch_size |
|
bases_cumsum_idx = self.ne_cumsum[idx] - self.ne_cumsum[bases_idx * self.batch_size] |
|
bases_cumsum_next_idx = self.ne_cumsum[idx + 1] - self.ne_cumsum[bases_idx * self.batch_size] |
|
return graph, label, {key: basis[bases_cumsum_idx:bases_cumsum_next_idx] for key, basis in |
|
self.bases[bases_idx].items()} |
|
else: |
|
return graph, label |
|
|