|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn.parallel import DistributedDataParallel |
|
from torch.utils.data import DataLoader |
|
from tqdm import tqdm |
|
|
|
from se3_transformer.runtime import gpu_affinity |
|
from se3_transformer.runtime.arguments import PARSER |
|
from se3_transformer.runtime.callbacks import BaseCallback |
|
from se3_transformer.runtime.loggers import DLLogger |
|
from se3_transformer.runtime.utils import to_cuda, get_local_rank |
|
|
|
|
|
@torch.inference_mode() |
|
def evaluate(model: nn.Module, |
|
dataloader: DataLoader, |
|
callbacks: List[BaseCallback], |
|
args): |
|
model.eval() |
|
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), unit='batch', desc=f'Evaluation', |
|
leave=False, disable=(args.silent or get_local_rank() != 0)): |
|
*input, target = to_cuda(batch) |
|
|
|
for callback in callbacks: |
|
callback.on_batch_start() |
|
|
|
with torch.cuda.amp.autocast(enabled=args.amp): |
|
pred = model(*input) |
|
|
|
for callback in callbacks: |
|
callback.on_validation_step(input, target, pred) |
|
|
|
|
|
if __name__ == '__main__': |
|
from se3_transformer.runtime.callbacks import QM9MetricCallback, PerformanceCallback |
|
from se3_transformer.runtime.utils import init_distributed, seed_everything |
|
from se3_transformer.model import SE3TransformerPooled, Fiber |
|
from se3_transformer.data_loading import QM9DataModule |
|
import torch.distributed as dist |
|
import logging |
|
import sys |
|
|
|
is_distributed = init_distributed() |
|
local_rank = get_local_rank() |
|
args = PARSER.parse_args() |
|
|
|
logging.getLogger().setLevel(logging.CRITICAL if local_rank != 0 or args.silent else logging.INFO) |
|
|
|
logging.info('====== SE(3)-Transformer ======') |
|
logging.info('| Inference on the test set |') |
|
logging.info('===============================') |
|
|
|
if not args.benchmark and args.load_ckpt_path is None: |
|
logging.error('No load_ckpt_path provided, you need to provide a saved model to evaluate') |
|
sys.exit(1) |
|
|
|
if args.benchmark: |
|
logging.info('Running benchmark mode with one warmup pass') |
|
|
|
if args.seed is not None: |
|
seed_everything(args.seed) |
|
|
|
major_cc, minor_cc = torch.cuda.get_device_capability() |
|
|
|
logger = DLLogger(args.log_dir, filename=args.dllogger_name) |
|
datamodule = QM9DataModule(**vars(args)) |
|
model = SE3TransformerPooled( |
|
fiber_in=Fiber({0: datamodule.NODE_FEATURE_DIM}), |
|
fiber_out=Fiber({0: args.num_degrees * args.num_channels}), |
|
fiber_edge=Fiber({0: datamodule.EDGE_FEATURE_DIM}), |
|
output_dim=1, |
|
tensor_cores=(args.amp and major_cc >= 7) or major_cc >= 8, |
|
**vars(args) |
|
) |
|
callbacks = [QM9MetricCallback(logger, targets_std=datamodule.targets_std, prefix='test')] |
|
|
|
model.to(device=torch.cuda.current_device()) |
|
if args.load_ckpt_path is not None: |
|
checkpoint = torch.load(str(args.load_ckpt_path), map_location={'cuda:0': f'cuda:{local_rank}'}) |
|
model.load_state_dict(checkpoint['state_dict']) |
|
|
|
if is_distributed: |
|
nproc_per_node = torch.cuda.device_count() |
|
affinity = gpu_affinity.set_affinity(local_rank, nproc_per_node) |
|
model = DistributedDataParallel(model, device_ids=[local_rank], output_device=local_rank) |
|
|
|
test_dataloader = datamodule.test_dataloader() if not args.benchmark else datamodule.train_dataloader() |
|
evaluate(model, |
|
test_dataloader, |
|
callbacks, |
|
args) |
|
|
|
for callback in callbacks: |
|
callback.on_validation_end() |
|
|
|
if args.benchmark: |
|
world_size = dist.get_world_size() if dist.is_initialized() else 1 |
|
callbacks = [PerformanceCallback(logger, args.batch_size * world_size, warmup_epochs=1, mode='inference')] |
|
for _ in range(6): |
|
evaluate(model, |
|
test_dataloader, |
|
callbacks, |
|
args) |
|
callbacks[0].on_epoch_end() |
|
|
|
callbacks[0].on_fit_end() |
|
|